A growing body of experimental evidence suggests that astroglia, and possibly microglia, play an important part in regulating synaptic networking of the brain. It has also emerged that extracellular matrix (ECM) structures that enwrap synaptic connections can generate molecular signals affecting both neuronal and glial activity. Thus it appears that the mechanism of information processing in the brain, which has hitherto been associated almost exclusively with neural circuits, could also involve informative signal exchange outside the synaptic cleft.
View Article and Find Full Text PDFFear conditioning, during which emotional significance is attached to an initially biologically insignificant conditioned stimulus, when such neutral stimulus is paired with an aversive unconditioned stimulus, provides an experimental paradigm that is most commonly used to study fear learning. The amygdala, a sub-cortical nuclear group, is a brain structure critically important for fear conditioning. Recent studies indicate that both fear conditioning-induced neuronal plasticity and LTP at the amygdala synapses share common mechanisms of induction and expression.
View Article and Find Full Text PDFThis chapter considers methods for measurements of postsynaptic responses and simple approaches to the estimation of parameters of quantal release in synapses of the central nervous system of vertebrates. The use of these methods is illustrated by the analysis of single-fibre and "minimal" monosynaptic postsynaptic potentials (PSPs) or currents (PSCs) recorded from neurons of the frog spinal cord and rat hippocampus. First, we briefly discuss traditional methods of the response measurements using peak amplitudes or areas, further focusing on a novel method based on multivariate statistical techniques of the principal component analysis (PCA).
View Article and Find Full Text PDF