Technology (Singap World Sci)
January 2020
Obtaining venous access for blood sampling or intravenous (IV) fluid delivery is an essential first step in patient care. However, success rates rely heavily on clinician experience and patient physiology. Difficulties in obtaining venous access result in missed sticks and injury to patients, and typically require alternative access pathways and additional personnel that lengthen procedure times, thereby creating unnecessary costs to healthcare facilities.
View Article and Find Full Text PDFCell replacement therapies, using renewable stem cell sources, hold tremendous potential to treat a wide range of degenerative diseases. Although many studies have established techniques to successfully differentiate stem cells into different mature cell lineages using growth factors or extracellular matrix protein supplementation in both two and three-dimensional configurations, they are often limited by lack of control and low yields of differentiated cells. Previously, we developed a scalable murine embryonic stem cell differentiation environment which maintained cell viability and supported ES cell differentiation to hepatocyte lineage cells.
View Article and Find Full Text PDFIntegral to the development of embryonic stem cell therapeutic strategies for hepatic disorders is the identification and establishment of a controllable hepatic differentiation strategy. In order to address this issue we have established an alginate microencapsulation approach which provides a means to modulate the differentiation process through changes in key encapsulation parameters. We report that a wide array of hepatocyte specific markers is expressed by cells differentiated during a 23-day period within an alginate bead microenvironment.
View Article and Find Full Text PDF