Despite significant capital and operating costs, mechanical vapor compression (MVC) remains the preferred technology for challenging brine concentration applications. This work seeks to assess the dependence of MVC costs on feedwater salinity and desired water recovery and to quantify the value of improved component performance or reduced component costs for reducing the levelized cost of water (LCOW) of MVC. We built a cost optimization model coupling thermophysical, heat and mass transfer, and technoeconomic models to optimize and identify low cost MVC system designs as a function of feedwater salinity and water recovery.
View Article and Find Full Text PDFThe role of altered brain mitochondrial regulation in psychiatric pathologies, including Major Depressive Disorder (MDD), has attracted increasing attention. Aberrant mitochondrial functions were suggested to underlie distinct inter-individual vulnerability to stress-related MDD syndrome. In this context, insulin receptor sensitizers (IRSs) that regulate brain metabolism have become a focus of recent research, as their use in pre-clinical studies can help to elucidate the role of mitochondrial dynamics in this disorder and contribute to the development of new antidepressant treatment.
View Article and Find Full Text PDFThe role of cholinergic projection systems of the neocortex and hippocampus in memory consolidation in healthy and neuropathological conditions has been subject to intensive research. On the contrary, the significance of cholinergic cortical and hippocampal interneurons in learning has hardly been studied. We aimed to evaluate the role of both cholinergic projection neurons and interneurons of the neocortex and hippocampus at an early stage of spatial memory consolidation (2s1) in normal and chronic brain hypoperfusion conditions.
View Article and Find Full Text PDFWe have previously suggested a key role of the hippocampus in the preconditioning action of moderate hypobaric hypoxia (HBH). The preconditioning efficiency of HBH is associated with acoustic startle prepulse inhibition (PPI). In rats with PPI > 40%, HBH activates the cholinergic projections of hippocampus, and PNU-282987, a selective agonist of α7 nicotinic receptors (α7nAChRs), reduces the HBH efficiency and potentiating effect on HBH of its solvent dimethyl sulfoxide (DMSO, anticholinesterase agent) when administered intraperitoneally.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2021
Reducing the cost of high-salinity (>75 g/L total dissolved solids) brine concentration technology would unlock the potential for vast inland water supplies and promote the safe management of concentrated aqueous waste streams. Impactful innovation will target component performance improvements and cost reductions that yield the highest impact on system costs, but the desalination community lacks methods for quantitatively evaluating the value of innovation or the robustness of technology platforms relative to competing technologies. This work proposes a suite of methods built on process-based cost optimization models that explicitly address the complexities of membrane-separation processes, namely that these processes comprise dozens of nonlinearly interacting components and that innovation can occur in more than one component at a time.
View Article and Find Full Text PDF(1) Background. A one-time moderate hypobaric hypoxia (HBH) has a preconditioning effect whose neuronal mechanisms are not studied well. Previously, we found a stable correlation between the HBH efficiency and acoustic startle prepulse inhibition (PPI).
View Article and Find Full Text PDFObjective: Introduction: The spread of infectious diseases, the increasing number of people who refuse immunization, the study of international standards of patient's rights during immunization in modern conditions are relevant in modern medical law. The aim: The aim of this research is clarification of patient's rights international standards for vaccination against infectious diseases and ways of their further implementation in Ukraine.
Patients And Methods: Materials and methods: The research is conducted using general and special scientific methods (philosophical-dogmatic, dialectical, logical-normative, system-functional and comparative-legal analysis, statistical and others).
Membrane-based treatment of oily wastewater remains a significant challenge, particularly under high salinity conditions. The main difficulty associated with this separation process is membrane fouling, mostly caused by wetting and coalescence of emulsified oil droplets on the membrane surface. In this study, electrically conducting carbon nanotube-based ultrafiltration membranes were used to treat an emulsified oil suspension at ionic strengths as high as 100 mM.
View Article and Find Full Text PDFThe desalination of inland brackish groundwater offers the opportunity to provide potable drinking water to residents and industrial cooling water to industries located in arid regions. Geothermal brines are used to generate electricity, but often contain high concentrations of dissolved salt. Here, we demonstrate how the residual heat left in spent geothermal brines can be used to drive a membrane distillation (MD) process and recover desalinated water.
View Article and Find Full Text PDFWater shortages and brine waste management are increasing challenges for coastal and inland regions, with high-salinity brines presenting a particularly challenging problem. These high-salinity waters require the use of thermally driven treatment processes, such as membrane distillation, which suffer from high complexity and cost. Here, we demonstrate how controlling the frequency of an applied alternating current at high potentials (20 V) to a porous thin-film carbon nanotube (CNT)/polymer composite Joule heating element can prevent CNT degradation in ionizable environments such as high-salinity brines.
View Article and Find Full Text PDFOil/water separations have become an area of great interest, as growing oil extraction activities are increasing the generation of oily wastewaters as well as increasing the risk of oil spills. Here, we demonstrate a membrane-based and fouling-free oil/water separation method that couples carbon nanotube-poly(vinyl alcohol) underwater superoleophobic ultrafiltration membranes with magnetic Pickering emulsions. We demonstrate that this process is insensitive to low water temperatures, high ionic strength, or crude oil loading, while allowing operation at high permeate fluxes and producing high quality permeate.
View Article and Find Full Text PDFThe electrochemical prevention and removal of CaSO4 and CaCO3 mineral scales on electrically conducting carbon nanotube - polyamide reverse osmosis membrane was investigated. Different electrical potentials were applied to the membrane surface while filtering model scaling solutions with high saturation indices. Scaling progression was monitored through flux measurements.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2013
Titanium dioxide is a semiconducting material that has been studied for many years as a photocatalytic material to degrade organics in water. This study investigated the effect of anatase-rutile mixtures and pH on the photocatalytic degradation of the dye Methylene blue as the target analyte. Anatase-rutile mixtures between 0 and 90% rutile that were synthesized from a water-soluble precursor were suspended at pH 4, 7, and 10.
View Article and Find Full Text PDFMethionine is an essential amino acid involved in many significant intracellular processes. Aberrations in methionine metabolism are associated with a number of complex pathologies. Liver plays a key role in regulation of blood methionine level.
View Article and Find Full Text PDF