Publications by authors named "Alexander Domoshnitsky"

There are almost no results in mathematical literature on the exponential stability of third-order delay differential equations. One of the main purposes of the paper is to fill this gap. We propose an approach to the study of stability for third-order delay differential equations.

View Article and Find Full Text PDF

In this paper a method for studying stability of the equation [Formula: see text] not including explicitly the first derivative is proposed. We demonstrate that although the corresponding ordinary differential equation [Formula: see text] is not exponentially stable, the delay equation can be exponentially stable.

View Article and Find Full Text PDF

The impulsive delay differential equation is considered (Lx)(t) = x'(t) + ∑(i=1)(m) p(i)(t)x(t - τ(i) (t)) = f(t), t ∈ [a, b], x(t j) = β(j)x(t(j - 0)), j = 1,…, k, a = t0 < t1 < t2 < ⋯ View Article and Find Full Text PDF