MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression posttranscriptionally by binding to the 3' untranslated regions of their target mRNAs. The evolutionarily conserved microRNA-125a (miR-125a) is highly expressed in both murine and human hematopoietic stem cells (HSCs), and previous studies have found that miR-125 strongly enhances self-renewal of HSCs and progenitors. In this study we explored whether temporary overexpression of miR-125a would be sufficient to permanently increase HSC self-renewal or, rather, whether persistent overexpression of miR-125a is required.
View Article and Find Full Text PDFWater mobility in cancer cells could be a powerful parameter to predict the progression or remission of tumors. In the present descriptive work, new insight into this concept was achieved by combining neutron scattering and thermal analyses. The results provide the first step to untangle the role played by water dynamics in breast cancer cells (MCF-7) after treatment with a chemotherapy drug.
View Article and Find Full Text PDFExpansion of hematopoietic stem cells (HSCs) is a 'holy grail' of regenerative medicine, as successful stem cell transplantations depend on the number and quality of infused HSCs. Although many attempts have been pursued to either chemically or genetically increase HSC numbers, neither clonal analysis of these expanded cells nor their ability to support mature blood lineages has been demonstrated. Here we show that miR-125a, at the single cell level, can expand murine long-term repopulating HSCs.
View Article and Find Full Text PDF