We demonstrate directed translocation of ClO anions from cationic to neutral binding site along the synthetized BPym-OH dye molecule that exhibits coupled excited-state intramolecular proton-transfer (ESIPT) and charge-transfer (CT) reaction (PCCT). The results of steady-state and time-resolved spectroscopy together with computer simulation and modeling show that in low polar toluene the excited-state redistribution of electronic charge enhanced by ESIPT generates the driving force, which is much stronger than by CT reaction itself and provides more informative gigantic shifts of fluorescence spectra signaling on ultrafast ion motion. The associated with ion translocation red-shifted fluorescence band (at 750 nm, extending to near-IR region) appears at the time ~83 ps as a result of electrochromic modulation of PCCT reaction.
View Article and Find Full Text PDFUnexpected discovery that molecules of organic dyes when they form regular structures can change dramatically their light absorption and fluorescence properties were attracting the minds of researchers for more than eight decades. The progress in investigation of this unique phenomenon described in terms of H- and J-aggregation has led to many practical applications. Here the author expresses his personal view on the dramatic story of switching this research area from empirical knowledge to that standing on strong background of molecular exciton theory.
View Article and Find Full Text PDFThe present Review is an attempt by projecting the basic knowledge on photochemical proton transfer to achieve consistent understanding of proton motions in biocatalysis, photobiocatalysis, operation of selective proton channels and systems of photosynthesis and cellular respiration. The basic mechanisms of proton transfer are in active research in the electronic excited states of organic molecules. This allows observing the reactions directly in real time, providing their dynamic and thermodynamic description and coupling with structural and energetic variables.
View Article and Find Full Text PDFThe wavelength-ratiometric techniques gain increasing popularity in fluorescence probing and sensing for providing inner reference to output signal and removing instrumental artefacts, in this way increasing the sensitivity and reliability of assays. Recent developments demonstrate that such approach can allow achieving much more, with the application of broad range of novel molecular and nanoscale fluorophores (luminophores), exploring the whole power of photophysical and photochemical effects and using extended range of assay formats. Simplicity of detection and potentially rich content of output data allows realizing these techniques in different simplified, miniaturized and multiplexing devices.
View Article and Find Full Text PDFThe wavelength-ratiometric techniques demonstrate strong advantages in fluorescence sensing and imaging over techniques employing variations of intensity at single wavelength. We present different possibilities for realization of these advantages in different simplified, miniaturized and multiplexing devices. They include the smartphone-based detection systems and strips, in which the color changes are observed with naked eye.
View Article and Find Full Text PDFHere, carbon nanodots synthesized from β-alanine (Ala-CDs) and detonation nanodiamonds (NDs) were assessed using (1) radiolabeled excitatory neurotransmitters L-[C]glutamate, D-[2,3H]aspartate, and inhibitory ones [H]GABA, [H]glycine for registration of their extracellular concentrations in rat cortex nerve terminals; (2) the fluorescent ratiometric probe NR12S and pH-sensitive probe acridine orange for registration of the membrane lipid order and synaptic vesicle acidification, respectively; (3) suspended bilayer lipid membrane (BLM) to monitor changes in transmembrane current. In nerve terminals, Ala-CDs and NDs increased the extracellular concentrations of neurotransmitters and decreased acidification of synaptic vesicles, whereas have not changed sufficiently the lipid order of membrane. Both nanoparticles, Ala-CDs and NDs, were capable of increasing the conductance of the BLM by inducing stable potential-dependent cation-selective pores.
View Article and Find Full Text PDFWe demonstrate the construction of wavelength λ-ratiometric images that allow visualizing the distribution of microscopic dynamics within living cells and tissues by using the newly developed principle of fluorescence response. The bent-to-planar motion in the excited state of incorporated fluorescence probes leads to elongation of the π-delocalization, resulting in microviscosity-dependent but polarity-insensitive interplay between well-separated blue and red bands in emission spectra. This allows constructing the exceptionally contrasted images of cellular dynamics.
View Article and Find Full Text PDFFluorescence labeling and probing are fundamental techniques for nucleic acid analysis and quantification. However, new fluorescent probes and approaches are urgently needed in order to accurately determine structural and conformational dynamics of DNA and RNA at the level of single nucleobases/base pairs, and to probe the interactions between nucleic acids with proteins. This review describes the means by which to achieve these goals using nucleobase replacement or modification with advanced fluorescent dyes that respond by the changing of their fluorescence parameters to their local environment (altered polarity, hydration, flipping dynamics, and formation/breaking of hydrogen bonds).
View Article and Find Full Text PDFMethods Appl Fluoresc
February 2020
Photochemical stability is one of the most important parameters that determine the usefulness of organic dyes in different applications. This Review addresses key factors that determine the dye photostability. It is shown that photodegradation can follow different oxygen-dependent and oxygen-independent mechanisms and may involve both S-T and higher-energy S-T excited states.
View Article and Find Full Text PDFNew technique of detecting lateral heterogeneity of the plasma membrane of living cells by means of membrane-binding fluorescent dyes is proposed. The kinetics of dye incorporation into the membrane or its lateral diffusion inside the membrane is measured and decomposed into exponential components by means of the Maximum Entropy Method. Two distinct exponential components are obtained consistently in all cases for several fluorescent dyes, two different cell lines and in different types of experiments including spectroscopy, flow cytometry and fluorescence recovery after photobleaching.
View Article and Find Full Text PDFThe unexpected discovery of the photoluminescence of carbon nanoparticles attracted the attention of many researchers and resulted in their use in a variety of applications. However, the origin of their emission is still obscure, and the majority of the discussions on the subject focus on their molecular and/or excitonic emissive states. We performed cryogenic studies down to 10 K and did not observe any signatures of suppressed molecular relaxation - the spectra remained broad, showing large unaltered Stokes shifts and temperature-independent emission intensities and lifetimes below 80 K with a weak dependence above this value.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
June 2018
The cell plasma membrane plays an essential role in programmed cell death of nucleated cells (apoptosis) and erythrocytes (eryptosis), and its changes due to loss of transmembrane asymmetry are quite similar. However, nucleated cells possess the network of intracellular membranes, which are missing in erythrocytes. Providing comparative studies with series of molecular probes, we observe dramatic differences in membrane lipid order in the course of apoptosis and eryptosis.
View Article and Find Full Text PDFThis paper provides a systematic review and analysis of different phenomena that violate a basic principle, Kasha's rule, when applied to photochemical reactions. In contrast to the classical route of ultrafast transition to the lowest energy excited state and photochemical reaction starting therein, in some cases, these reactions proceed directly from high-energy excited states. Nowadays, this phenomenon can be observed for a number of major types of excited-state reactions: harvesting product via intersystem crossing; photoisomerizations; bond-breaking; and electron, proton, and energy transfers.
View Article and Find Full Text PDFMethods Appl Fluoresc
December 2017
J-aggregates are fascinating fluorescent nanomaterials formed by highly ordered assembly of organic dyes with the spectroscopic properties dramatically different from that of single or disorderly assembled dye molecules. They demonstrate very narrow red-shifted absorption and emission bands, strongly increased absorbance together with the decrease of radiative lifetime, highly polarized emission and other valuable features. The mechanisms of their electronic transitions are understood by formation of delocalized excitons already on the level of several coupled monomers.
View Article and Find Full Text PDFIn this research we investigate the connection between the cytoplasmic machinery of apoptosis and the plasma membrane organization by studying the coupling of caspase-3 activation and inhibition with PS exposure and the change of lipid order in plasma membrane sensed by a fluorescent membrane probe NR12S. First, we performed in silico molecular dynamics simulations, which suggest that the mechanism of response of NR12S to lipid order may combine both sensitivity to membrane polarity/hydration and change in the fluorophore orientation. Second, cellular studies revealed that upon triggering apoptosis with IPA-3 and camptothecin the NR12S response is similar to that observed after decrease of lipid order induced by cholesterol depletion, 7-ketocholesterol enrichment or sphingomyelin hydrolysis.
View Article and Find Full Text PDFCarbon nanoparticles that may be potent air pollutants with adverse effects on human health often contain heteroatoms including sulfur. In order to study in detail their effects on different physiological and biochemical processes, artificially produced carbon dots (CDs) with well-controlled composition that allows fluorescence detection may be of great use. Having been prepared from different types of organic precursors, CDs expose different atoms at their surface suggesting a broad variation of functional groups.
View Article and Find Full Text PDFAt present, there is no consensus understanding on the origin of photoluminescence of carbon nanoparticles, particularly the so-called carbon dots. Providing comparative analysis of spectroscopic studies in solution and on a single-molecular level, we demonstrate that these particles behave collectively as fixed single dipoles and probably are the quantum emitter entities. Their spectral and lifetime heterogeneity in solutions is explained by variation of the local chemical environment within and around luminescence centers.
View Article and Find Full Text PDFWe report unusual photophysical properties observed on two newly designed 3-hydroxychromone derivatives exhibiting the excited-state intramolecular proton transfer (ESIPT) reaction. The efficiency of ESIPT reaction is greatly enhanced upon excitation with high energy quanta to S ( > 1) levels in low-polarity solvents. Based on detailed analyses of excitation and emission spectra as well as time-resolved emission kinetics we derive that conditions, in which this phenomenon contradicting Kasha's rule is observed, are quite different from that for observation of anti-Kasha emission.
View Article and Find Full Text PDFSuccess in super-resolution imaging relies on a proper choice of fluorescent probes. Here, we suggest novel easily produced and biocompatible nanoparticles-carbon nanodots-for super-resolution optical fluctuation bioimaging (SOFI). The particles revealed an intrinsic dual-color fluorescence, which corresponds to two subpopulations of particles of different electric charges.
View Article and Find Full Text PDFJ Nanobiotechnology
November 2015
Apoptosis is a genetically encoded cell death program that involves different processes occurring on molecular and sub-cellular levels. Here we report on its new features--the increased accumulation of fluorescent carbon nanoparticles (CDots) in cells and their changed distribution within cell interior, which can witness on altered mechanisms of their translocation through the membrane. The comparative studies of living (intact) and apoptotic cells were provided with two cell lines (HeLa, Vero) using two types of fluorescent nanoparticles ("violet" and "blue" CDots).
View Article and Find Full Text PDFInt J Biochem Cell Biol
February 2015
Carbon dots (C-dots), a recently discovered class of fluorescent nano-sized particles with pure carbon core, have great bioanalytical potential. Neuroactive properties of fluorescent C-dots obtained from β-alanine by microwave heating were assessed based on the analysis of their effects on the key characteristics of GABA- and glutamatergic neurotransmission in isolated rat brain nerve terminals. It was found that C-dots (40-800 μg/ml) in dose-dependent manner: (1) decreased exocytotic release of [(3)H]GABA and L-[(14)C]glutamate; (2) reduced acidification of synaptic vesicles; (3) attenuated the initial velocity of Na(+)-dependent transporter-mediated uptake of [(3)H]GABA and L-[(14)C]glutamate; (4) increased the ambient level of the neurotransmitters, nevertheless (5) did not change significantly the potential of the plasma membrane of nerve terminals.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2014
A brilliant scientist and an outstanding personality who was one of the founders of modern photochemistry-Michael Kasha-is the subject of this Essay. Kasha's rule and the Kasha effect both bear his name, and he also discovered the chemical production of singlet molecular oxygen, and was a pioneer of excited-state proton transfer systems. Kasha combined his passion for chemistry and physics with that for music, photography, and botany.
View Article and Find Full Text PDFAsymmetric lipid composition of the cell membranes plays an important role in the multitude of important biological functions. Much less is known, however, about the distribution and dynamics of cholesterol in asymmetric biological membranes. In this work we show how this issue could be addressed computationally by molecular dynamics simulations.
View Article and Find Full Text PDFFluorescence is one of the most powerful and commonly used tools in biophysical studies of biomembrane structure and dynamics that can be applied on different levels, from lipid monolayers and bilayers to living cells, tissues, and whole animals. Successful application of this method relies on proper design of fluorescence probes with optimized photophysical properties. These probes are efficient for studying the microscopic analogs of viscosity, polarity, and hydration, as well as the molecular order, environment relaxation, and electrostatic potentials at the sites of their location.
View Article and Find Full Text PDFInorganic carbon nanomaterials, also called carbon nanodots, exhibit a strong photoluminescence with unusual properties and, thus, have been the focus of intense research. Nonetheless, the origin of their photoluminescence is still unclear and the subject of scientific debates. Here, we present a single particle comprehensive study of carbon nanodot photoluminescence, which combines emission and lifetime spectroscopy, defocused emission dipole imaging, azimuthally polarized excitation dipole scanning, nanocavity-based quantum yield measurements, high resolution transmission electron microscopy, and atomic force microscopy.
View Article and Find Full Text PDF