Pro- and anti-inflammatory effector functions of IgG antibodies (Abs) depend on their subclass and Fc glycosylation pattern. Accumulation of non-galactosylated (agalactosylated; G0) IgG Abs in the serum of rheumatoid arthritis and systemic lupus erythematosus (SLE) patients reflects severity of the diseases. In contrast, sialylated IgG Abs are responsible for anti-inflammatory effects of the intravenous immunoglobulin (pooled human serum IgG from healthy donors), administered in high doses (2 g/kg) to treat autoimmune patients.
View Article and Find Full Text PDFAntigen-specific Abs are able to enhance or suppress immune responses depending on the receptors that they bind on immune cells. Recent studies have shown that pro- or antiinflammatory effector functions of IgG Abs are also regulated through their Fc N-linked glycosylation patterns. IgG Abs that are agalactosylated (non-galactosylated) and asialylated are proinflammatory and induced by the combination of T cell-dependent (TD) protein antigens and proinflammatory costimulation.
View Article and Find Full Text PDFBackground: Under inflammatory conditions, T cell-dependent (TD) protein antigens induce proinflammatory T- and B-cell responses. In contrast, tolerance induction by TD antigens without costimulation triggers the development of regulatory T cells. Under both conditions, IgG antibodies are generated, but whether they have different immunoregulatory functions remains elusive.
View Article and Find Full Text PDFThe role of TLR9 in the development of the autoimmune disease systemic lupus erythematosus is controversial. In different mouse models of the disease, loss of TLR9 abolishes the generation of anti-nucleosome IgG autoantibodies but at the same time exacerbates lupus disease. However, the TLR9-dependent tolerance mechanism is unknown.
View Article and Find Full Text PDF