Publications by authors named "Alexander D Egorov"

Obesity is a significant metabolic disorder associated with excessive fat accumulation and insulin resistance. In this study, we explored a gene therapy approach to treat obesity in agouti mice using adeno-associated viruses (AAVs) carrying PRDM16, FoxP4, or Follistatin (FST) genes, which are known to promote the browning of white adipose tissue. Mice treated with AAVs encoding PRDM16, FoxP4, or FST genes showed a reduction in body weight (10-14%) within the first three weeks after administration, compared to the control groups.

View Article and Find Full Text PDF

Background/objectives: Adeno-associated viruses (AAVs) are widely used as viral vectors for gene delivery in mammalian cells. We focused on the efficacy of the transduction of AAV2/5, 2/6, 2/8 and 2/9 expressing GFP in preadipocyte cells by live imaging microscopy using IncuCyte S3 and flow cytometry.

Methods: Three transduction modes in 3T3-L1 preadipocyte cells assessed: AAV transduction in 3T3-L1 preadipocyte cells, transduction with further differentiation into mature adipocyte-like cells and the transduction of differentiated 3T3-L1 adipocytes.

View Article and Find Full Text PDF

Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown.

View Article and Find Full Text PDF

Throughout the years, several hundred million people with rare genetic disorders have been receiving only symptom management therapy. However, research and development efforts worldwide have led to the development of long-lasting, highly efficient, and safe gene therapy for a wide range of hereditary diseases. Improved viral vectors are now able to evade the preexisting immunity and more efficiently target and transduce therapeutically relevant cells, ensuring genome maintenance and expression of transgenes at the relevant levels.

View Article and Find Full Text PDF

Anti-cancer therapy based on oncolytic viruses (OVs) is a targeted approach that takes advantage of OVs' ability to selectively infect and replicate in tumor cells, activate the host immune response, and destroy malignant cells over healthy ones. Vesicular stomatitis virus (VSV) is known for its wide range of advantages: a lack of pre-existing immunity, a genome that is easily amenable to manipulation, and rapid growth to high titers in a broad range of cell lines, to name a few. VSV-induced tumor immunity can be enhanced by the delivery of immunostimulatory cytokines.

View Article and Find Full Text PDF

Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies.

View Article and Find Full Text PDF

The hereditary aspect of obesity is a major focus of modern medical genetics. The genetic background is known to determine a higher-than-average prevalence of obesity in certain regions, like Oceania. There is evidence that dysfunction of brown adipose tissue (BAT) may be a risk factor for obesity and type 2 diabetes (T2D).

View Article and Find Full Text PDF