DHPS deficiency syndrome is an ultra-rare neurodevelopmental disorder (NDD) which results from biallelic mutations in the gene encoding the enzyme deoxyhypusine synthase (DHPS). DHPS is essential to synthesize hypusine, a rare amino acid formed by post-translational modification of a conserved lysine in eukaryotic initiation factor 5 A (eIF5A). DHPS deficiency syndrome causes epilepsy, cognitive and motor impairments, and mild facial dysmorphology.
View Article and Find Full Text PDFCHD2-related epilepsy is characterized by early-onset photosensitive myoclonic epilepsy with developmental delay and a high rate of pharmacoresistance. We sought to evaluate the efficacy of acetazolamide (ACZ) in CHD2-related epilepsy, due to ACZ's unexpected efficacy in our first patient harboring a pathogenic CHD2 variant. We collected patients from different Eastern European countries with drug-resistant CHD2-related epilepsy who were then treated with ACZ.
View Article and Find Full Text PDFYeasts contain bioactive components that can enhance fish immune robustness and disease resistance. Our study focused on analyzing intestinal immunoregulatory pathways in zebrafish () using iTRAQ and 2D LC-MS/MS to quantify intestinal proteins. Zebrafish were fed either control diet (C) or diet supplemented with autolyzed (ACJ).
View Article and Find Full Text PDFJuvenile neuronal ceroid lipofuscinosis (or Batten disease) is an autosomal recessive, rare neurodegenerative disorder that affects mainly children above the age of 5 yr and is most commonly caused by mutations in the highly conserved gene. Here, we generated morphants and stable mutant lines in zebrafish. Although neither morphant nor mutant larvae showed any obvious developmental or morphological defects, behavioral phenotyping of the mutant larvae revealed hyposensitivity to abrupt light changes and hypersensitivity to pro-convulsive drugs.
View Article and Find Full Text PDFEpilepsy is a chronic brain disorder characterized by unprovoked and recurrent seizures, of which 60% are of unknown etiology. Recent studies implicate microglia in the pathophysiology of epilepsy. However, their role in this process, in particular following early-life seizures, remains poorly understood due in part to the lack of suitable experimental models allowing the in vivo imaging of microglial activity.
View Article and Find Full Text PDFFive new alkaloids have been isolated from the lipophilic extract of the Antarctic tunicate sp. Deep-sea specimens of sp. were collected during a 2011 cruise of the R/V to the southern Scotia Arc, Antarctica.
View Article and Find Full Text PDFPharmaSea performed large-scale in vivo screening of marine natural product (MNP) extracts, using zebrafish embryos and larvae, to identify compounds with the potential to treat epilepsy. In this study, we report the discovery of two new antiseizure compounds, the 2,5-diketopiperazine halimide and its semi-synthetic analogue, plinabulin. Interestingly, these are both known microtubule destabilizing agents, and plinabulin could have the potential for drug repurposing, as it is already in clinical trials for the prevention of chemotherapy-induced neutropenia and treatment of non-small cell lung cancer.
View Article and Find Full Text PDFEthnopharmacological Relevance: In South Africa, medicinal plants have a history of traditional use, with many species used for treating wounds. The scientific basis of such uses remains largely unexplored.
Aim Of The Study: To screen South African plants used ethnomedicinally for wound healing based on their pro-angiogenic and wound healing activity, using transgenic zebrafish larvae and cell culture assays.
J Ethnopharmacol
October 2021
Ethnopharmacological Relevance: Epilepsy is one of the major chronic diseases that does not have a cure to date. Adverse drug reactions have been reported from the use of available anti-epileptic drugs (AEDs) which are also effective in only two-thirds of the patients. Accordingly, the identification of scaffolds with promising anti-seizure activity remains an important first step towards the development of new anti-epileptic therapies, with improved efficacy and reduced adverse effects.
View Article and Find Full Text PDFThe resin of the tree Flueck. (synonym: ; Burseraceae), also known as "frankincense", is a traditional remedy used for central nervous system disorders in East Africa. Here we report the evaluation of its antiseizure activity in zebrafish and mouse epilepsy models to identify novel antiseizure compounds.
View Article and Find Full Text PDFIsomerization of l-aspartyl and l-asparaginyl residues to l-isoaspartyl residues is one type of protein damage that can occur under physiological conditions and leads to conformational changes, loss of function, and enhanced protein degradation. Protein l-isoaspartyl methyltransferase (PCMT) is a repair enzyme whose action initiates the reconversion of abnormal l-isoaspartyl residues to normal l-aspartyl residues in proteins. Many lines of evidence support a crucial role for PCMT in the brain, but the mechanisms involved remain poorly understood.
View Article and Find Full Text PDFMutations in () are causally linked to the rare neurodegenerative disorders Kufor-Rakeb syndrome, hereditary spastic paraplegia and neuronal ceroid lipofuscinosis. This suggests that ATP13A2, a lysosomal cation-transporting ATPase, plays a crucial role in neuronal cells. The heterogeneity of the clinical spectrum of -associated disorders is not yet well understood and currently, these diseases remain without effective treatment.
View Article and Find Full Text PDFThe rhizomes of "Bangle", were investigated for its antiseizure properties using a streamlined and cost-effective zebrafish screening strategy and a mouse epilepsy assay. Its hexane extract demonstrated strong antiseizure activity in zebrafish epilepsy assay and was, therefore, selected for bioactivity-guided fractionation. Twelve compounds (-) were isolated, and two bioactive phenylbutenoids, - () and -banglene (), reduced up to 70% of pentylenetetrazole (PTZ)-induced seizures.
View Article and Find Full Text PDFNeurosci Biobehav Rev
September 2020
Zebrafish are now widely accepted as a valuable animal model for a number of different central nervous system (CNS) diseases. They are suitable both for elucidating the origin of these disorders and the sequence of events culminating in their onset, and for use as a high-throughput in vivo drug screening platform. The availability of powerful and effective techniques for genome manipulation allows the rapid modelling of different genetic epilepsies and of conditions with seizures as a core symptom.
View Article and Find Full Text PDFJ Ethnopharmacol
September 2020
Ethnopharmacological Relevance: Ethnopharmacological data and ancient texts support the use of black hellebore (Helleborus odorus subsp. cyclophyllus, Ranunculaceae) for the management and treatment of epilepsy in ancient Greece.
Aim Of The Study: A pharmacological investigation of the root methanolic extract (RME) was conducted using the zebrafish epilepsy model to isolate and identify the compounds responsible for a potential antiseizure activity and to provide evidence of its historical use.
Background: Epilepsy is a chronic neurological disorder affecting more than 50 million people worldwide, of whom 80% live in low- and middle-income countries. Due to the limited availability of antiseizure drugs (ASDs) in these countries, medicinal plants are the first-line treatment for most epilepsy patients. In Cameroon, a decoction of Cyperus articulatus L.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
March 2020
Nicotine, the primary psychoactive component of tobacco, is the most widely used drug of abuse. Although the substance is well-known, there is still a lack of information concerning its long-term neurological and physiological effects and its mechanisms of action. In order to search for new, effective drugs in the therapy of nicotinism, as well as to design new drugs that exert positive nicotine-like effects, further experiments are needed, ideally also using new behavioural models and paradigms.
View Article and Find Full Text PDFThere is a high need for the development of new and improved antiseizure drugs (ASDs) to treat epilepsy. Despite the potential of marine natural products (MNPs), the EU marine biodiscovery consortium PharmaSea has made the only effort to date to perform ASD discovery based on large-scale screening of MNPs. To this end, the embryonic zebrafish photomotor response assay and the larval zebrafish pentylenetetrazole (PTZ) model were used to screen MNP extracts for neuroactivity and antiseizure activity, respectively.
View Article and Find Full Text PDFPhytomedicine
February 2019
Background: Medicinal plants are a proven source of drug-like small molecules with activity towards targets relevant for diseases of the central nervous system (CNS). Plant species of the Apiaceae family have to date yielded a number of neuroactive metabolites, such as coumarin derivatives with acetylcholinesterase inhibitory activity or anti-seizure activity.
Purpose: To accelerate the discovery of neuroactive phytochemicals with potential as CNS drug leads, we sought to rapidly isolate furanocoumarins, primary constituents of the dichloromethane (DCM) extract of the fruits of Peucedanum alsaticum L.
One of the most popular techniques in zebrafish research is microinjection. This is a rapid and efficient way to genetically manipulate early developing embryos, and to introduce microbes, chemical compounds, nanoparticles or tracers at larval stages. Here we demonstrate the development of a machine learning software that allows for microinjection at a trained target site in zebrafish eggs at unprecedented speed.
View Article and Find Full Text PDFWith the goal of identifying neuroactive secondary metabolites from microalgae, a microscale in vivo zebrafish bioassay for antiseizure activity was used to evaluate bioactivities of the diatom Skeletonema marinoi, which was recently revealed as being a promising source of drug-like small molecules. A freeze-dried culture of S. marinoi was extracted by solvents with increasing polarities (hexane, dichloromethane, methanol and water) and these extracts were screened for anticonvulsant activity using a larval zebrafish epilepsy model with seizures induced by the GABAA antagonist pentylenetetrazole.
View Article and Find Full Text PDFSummary: Ca2+ is a central second messenger in eukaryotic cells that regulates many cellular processes. Recently, we have indicated that typical Ca2+ signals are not purely oscillatory as widely assumed, but exhibit stochastic spiking with cell type and pathway specific characteristics. Here, we present the Calcium Signaling Analyzer (CaSiAn), an open source software tool that allows for quantifying these signal characteristics including individual spike properties and time course statistics in a semi-automated manner.
View Article and Find Full Text PDFAfter the identification of the anti-inflammatory properties of VA5-13l (2-benzyl-1- methyl-5-nitroindazolinone) in previous investigations, some of its analogous compounds were designed, synthesized and evaluated in two anti-inflammatory methods: LPS-enhanced leukocyte migration assay in zebrafish; and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema. The products evaluated (3, 6, 8, 9 and 10) showed the lower values of relative leukocyte migration at 30 µM (0.14, 0.
View Article and Find Full Text PDF