Cellular hitchhiking is an emerging strategy for the control of adoptively transferred immune cells. Hitchhiking approaches are primarily mediated by adhesion of nano and microparticles to the cell membrane, which conveys an ability to modulate transferred cells local drug delivery. Although T cell therapies employing this strategy have progressed into the clinic, phagocytic cells including dendritic cells (DCs) are much more challenging to engineer.
View Article and Find Full Text PDFRibonucleic acid (RNA) therapeutics are being actively researched as a therapeutic modality in preclinical and clinical studies. They have become one of the most ubiquitously known and discussed therapeutics in recent years in part due to the ongoing coronavirus pandemic. Since the first approval in 1998, research on RNA therapeutics has progressed to discovering new therapeutic targets and delivery strategies to enhance their safety and efficacy.
View Article and Find Full Text PDFProteins are among the most common therapeutics for the treatment of diabetes, autoimmune diseases, cancer, and metabolic diseases, among others. Despite their common use, current protein therapies, most of which are injectables, have several limitations. Large proteins such as monoclonal antibodies (mAbs) suffer from poor absorption after subcutaneous injections, thus forcing their administration by intravenous injections.
View Article and Find Full Text PDFThe use of ionic liquids and deep eutectic solvents in biomedical applications has grown dramatically in recent years due to their unique properties and their inherent tunability. This review will introduce ionic liquids and deep eutectics and discuss their biomedical applications, namely solubilization of drugs, creation of active pharmaceutical ingredients, delivery of pharmaceuticals through biological barriers, stabilization of proteins and other nucleic acids, antibacterial agents, and development of new biosensors. Current challenges and future outlooks are discussed, including biocompatibility, the potential impact of the presence of impurities, and the importance of understanding the microscopic interactions in ionic liquids in order to design task-specific solvents.
View Article and Find Full Text PDFThe mucus barrier lining the gastrointestinal tract poses a significant barrier to the oral delivery of macromolecular drugs. Successful approaches to overcoming this barrier have primarily focused on reducing drug and carrier interactions with mucus or disrupting the mucus layer directly. Choline-based ionic liquids (ILs) such as choline geranate and choline glycolate (CGLY) have recently been shown to be effective in enhancing the intestinal absorption of macromolecules such as insulin and immunoglobulin (IgG), respectively.
View Article and Find Full Text PDFAdjuvants play a critical role in the design and development of novel vaccines. Despite extensive research, only a handful of vaccine adjuvants have been approved for human use. Currently used adjuvants are mostly composed of components that are non-native to the human body, such as aluminum salt, bacterial lipids, or foreign genomic material.
View Article and Find Full Text PDFIonic liquids (ILs) and deep eutectic solvents have shown great promise in drug delivery applications. Choline-based ILs, in particular choline and geranic acid (CAGE), have been used to enhance the transdermal delivery of several small and large molecules. However, detailed studies outlining the design principles of ILs for transdermal drug delivery are still lacking.
View Article and Find Full Text PDF