Background And Objective: The paper describes a mathematical model of blood flow in capillaries with accounting for the endothelial surface layer (ESL).
Method: The influence of ESL is modeled by a boundary layer with zero flow velocity. Finite element modeling and an analytical approach based on the homogenization of the core region of blood flow occupied by erythrocytes are developed to describe the resistance of a capillary.
A novel dispersive liquid-liquid semi-microextraction (DLLsME) procedure for copper(II) preconcentration is proposed. The system containing copper(II) and 6,7-dihydroxy-2,4-diphenylbenzopyrylium chloride (DHDPhB), after addition a mixture of chloroform and methanol becomes cloudy and the formation of the organic phase was observed immediately. The optimal conditions of DLLsME were found to be: pH 5, absorption band maximum was 570 nm, 1 cm3 of 1×10-3 mol/dm3ofDHDPhB, and mixed extractant containing 1 cm3 of chloroform and 1 cm3 of methanol.
View Article and Find Full Text PDFThe paper addresses the mathematical study of a nonstationary continuum model describing oxygen propagation in cerebral substance. The model allows to estimate the rate of oxygen saturation and stabilization of oxygen concentration in relatively large parts of cerebral tissue. A theoretical and numerical analysis of the model is performed.
View Article and Find Full Text PDFA novel fast room temperature cloud point extraction (RT-CPE) procedure for preconcentration and spectrophotometric determination of phosphate based on the heteropoly blue formation was developed. The proposed method includes the formation of yellow molybdoantymonatophosphoric heteropoly complex, its extraction into Triton X-100 micellar phase obtained at room temperature and reduction of heteropoly complex by ascorbic acid solution in ethanol and absorbance measurement of heteropoly blue at 790 nm. Under optimal conditions (1% (v/v) of Triton X-100 and 0.
View Article and Find Full Text PDFIn the present study a kinetic-spectrophotometric method for thiocyanate determination is described. The suggested method for the determination of thiocyanate is based on its "Landolt effect" on the reaction of bromate with hydrobromic acid, which leads to the formation of only one halogen bromine. The reaction was monitored spectrophotometrically at the maximum wavelength of astrafloxine FF light absorption at 535 nm.
View Article and Find Full Text PDF