Publications by authors named "Alexander Cetnar"

The heart is the first organ to develop in the human embryo through a series of complex chronological processes, many of which critically rely on the interplay between cells and the dynamic microenvironment. Tight spatiotemporal regulation of these interactions is key in heart development and diseases. Due to suboptimal experimental models, however, little is known about the role of microenvironmental cues in the heart development.

View Article and Find Full Text PDF

Background Tetralogy of Fallot with major aortopulmonary collateral arteries is a heterogeneous form of pulmonary artery (PA) stenosis that requires multiple forms of intervention. We present a patient-specific in vitro platform capable of sustained flow that can be used to train proceduralists and surgical teams in current interventions, as well as in developing novel therapeutic approaches to treat various vascular anomalies. Our objective is to develop an in vitro model of PA stenosis based on patient data that can be used as an in vitro phantom to model cardiovascular disease and explore potential interventions.

View Article and Find Full Text PDF

Purpose Of Review: Tissue engineering has expanded into a highly versatile manufacturing landscape that holds great promise for advancing cardiovascular regenerative medicine. In this review, we provide a summary of the current state-of-the-art bioengineering technologies used to create functional cardiac tissues for a variety of applications in vitro and in vivo.

Recent Findings: Studies over the past few years have made a strong case that tissue engineering is one of the major driving forces behind the accelerating fields of patient-specific regenerative medicine, precision medicine, compound screening, and disease modeling.

View Article and Find Full Text PDF

To date, the fields of biomaterials science and tissue engineering have shown great promise in creating bioartificial tissues and organs for use in a variety of regenerative medicine applications. With the emergence of new technologies such as additive biomanufacturing and 3D bioprinting, increasingly complex tissue constructs are being fabricated to fulfill the desired patient-specific requirements. Fundamental to the further advancement of this field is the design and development of imaging modalities that can enable visualization of the bioengineered constructs following implantation, at adequate spatial and temporal resolution and high penetration depths.

View Article and Find Full Text PDF