Publications by authors named "Alexander Cernusca"

European mountain grasslands are increasingly affected by land-use changes and climate, which have been suggested to exert important controls on grassland carbon (C) and nitrogen (N) pools. However, so far there has been no synthetic study on whether and how land-use changes and climate interactively affect the partitioning of these pools amongst the different grassland compartments. We analyzed the partitioning of C and N pools of 36 European mountain grasslands differing in land-use and climate with respect to above- and belowground phytomass, litter and topsoil (top 23 cm).

View Article and Find Full Text PDF

Soil respiration constitutes the second largest flux of carbon (C) between terrestrial ecosystems and the atmosphere. This study provides a synthesis of soil respiration (R(s)) in 20 European grasslands across a climatic transect, including ten meadows, eight pastures and two unmanaged grasslands. Maximum rates of R(s) (R(s(max) )), R(s) at a reference soil temperature (10°C; R(s(10) )) and annual R(s) (estimated for 13 sites) ranged from 1.

View Article and Find Full Text PDF

There is an ongoing discussion about why the net ecosystem CO exchange (NEE) of some ecosystems is less sensitive to diffuse radiation than others and about the role other environmental factors play in determining the response of NEE to diffuse radiation. Using a six-year data set from a temperate mountain grassland in Austria we show that differences between ecosystems may be reconciled based on their green area index (GAI; square meter green plant area per square meter ground area) - the sensitivity to diffuse radiation increasing with GAI. Our data suggest diffuse radiation to have a negligible influence on NEE below a GAI of 2 m m.

View Article and Find Full Text PDF

The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP).

View Article and Find Full Text PDF

Carbon dioxide, latent and sensible energy fluxes were measured by means of the eddy covariance method above a mountain meadow situated on a steep slope in the Stubai Valley/Austria, based on the hypothesis that, due to the low canopy height, measurements can be made in the shallow equilibrium layer where the wind field exhibits characteristics akin to level terrain. In order to test the validity of this hypothesis and to identify effects of complex terrain in the turbulence measurements, data were subjected to a rigorous testing procedure using a series of quality control measures established for surface layer flows. The resulting high-quality data set comprised 36 % of the original observations, the substantial reduction being mainly due to a change in surface roughness and associated fetch limitations in the wind sector dominating during nighttime and transition periods.

View Article and Find Full Text PDF

Measurements of the radiation extinction in a meadow at Baumkirchen (Tyrol) show that the decrease in the photosynthetically active radiation (PhAR: 400-700 nm) is different to that of the total net-radiation in a characteristic way. The photosynthetically active radiation is distributed evenly to all vegetation layers, the "active surface" comprises practically the entire 90 cm high canopy. The total radiation energy (net-radiation) is absorbed and 45% is converted into sensible and latent heat only in a 25 cm wide layer, i.

View Article and Find Full Text PDF