Publications by authors named "Alexander C Winkler"

Understanding the spawning behavior of meagre (Argyrosomus regius) is crucial for fisheries management and conservation. Meagre forms large spawning aggregations in estuaries, yet details of its spawning grounds remain elusive. We tagged 41 individuals and monitored their movements throughout several spawning seasons.

View Article and Find Full Text PDF

The widespread adoption of acoustic telemetry has transformed our understanding of marine species' behavior and movement ecology. However, accurately interpreting telemetry data, especially concerning tagging mortality, is essential for drawing valid conclusions. In this study, we scrutinized tagging mortality in 223 individuals across 14 species and evaluated the impact of tagging methodologies, including capture method and size effects.

View Article and Find Full Text PDF

Background: The meagre, Argyrosomus regius, is a large coastal predatory fish inhabiting waters from the north-eastern Atlantic and Mediterranean Sea, where it is targeted by commercial and recreational fisheries. Previous genetic studies have found an unexpectedly high population differentiation not only between the Atlantic and the Mediterranean, but also along the Atlantic coast. However, the reasons underpinning this genetic barrier remained unclear.

View Article and Find Full Text PDF

Argyrosomus regius (commonly referred to as meagre), is one of Europe's largest coastal bony fish species and supports important recreational and commercial fisheries in the Atlantic and Mediterranean coasts. Demand for this species, and more recently for their swim bladders, has led to regional population declines and growing importance as an aquaculture species. Despite intense research in captivity, little is known about the spatial ecology of A.

View Article and Find Full Text PDF

Anthropogenic-induced climate change is having profound impacts on aquatic ecosystems, and the resilience of fish populations will be determined by their response to these impacts. The northern Namibian coast is an ocean warming hotspot, with temperatures rising faster than the global average. The rapid warming in Namibia has had considerable impacts on marine fauna, such as the southern extension of the distribution of from southern Angola into northern Namibian waters, where it now overlaps and hybridizes with the closely related Namibian species, .

View Article and Find Full Text PDF

Online evidence suggests that there has been an increase in interest of using unmanned aerial vehicles or drones during land-based marine recreational fishing. In the absence of reliable monitoring programs, this study used unconventional publicly available online monitoring methodologies to estimate the growing interest, global extent, catch composition and governance of this practice. Results indicated a 357% spike in interest during 2016 primarily in New Zealand, South Africa and Australia.

View Article and Find Full Text PDF

As marine environments are influenced by global warming there is a need to thoroughly understand the relationship between physiological limits and temperature in fish. One quick screening method of a physiological thermal tipping point is the temperature at which maximum heart rate (ƒ) can no longer scale predictably with warming and is referred to as the Arrhenius break temperature (T). The use of this method has been successful for freshwater fish by using external electrodes to detect an electrocardiogram (ECG), however, the properties of this equipment pose challenges in salt water when evaluating marine fish.

View Article and Find Full Text PDF

Quantifying how the heart rate of ectothermic organisms responds to environmental conditions (e.g. water temperature) is important information to quantify their sensitivity to environmental change.

View Article and Find Full Text PDF