Clinical trials have identified ARID1A mutations as enriched among patients who respond favorably to immune checkpoint blockade (ICB) in several solid tumor types independent of microsatellite instability. We show that ARID1A loss in murine models is sufficient to induce anti-tumor immune phenotypes observed in ARID1A mutant human cancers, including increased CD8+ T cell infiltration and cytolytic activity. ARID1A-deficient cancers upregulated an interferon (IFN) gene expression signature, the ARID1A-IFN signature, associated with increased R-loops and cytosolic single-stranded DNA (ssDNA).
View Article and Find Full Text PDFSignaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here we describe the high-throughput, functional assessment of phosphorylation sites through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally resolved phosphoproteomics.
View Article and Find Full Text PDFFatalska et al. use an interdisciplinary strategy to elucidate how an intrinsically disordered regulatory subunit of protein phosphatase 1 binds trimeric eIF2 and positions the phosphatase-substrate complex for dephosphorylation. As validation, they show that a disease mutation abolishes the interaction.
View Article and Find Full Text PDFSignaling pathways that drive gene expression are typically depicted as having a dozen or so landmark phosphorylation and transcriptional events. In reality, thousands of dynamic post-translational modifications (PTMs) orchestrate nearly every cellular function, and we lack technologies to find causal links between these vast biochemical pathways and genetic circuits at scale. Here, we describe "signaling-to-transcription network" mapping through the development of PTM-centric base editing coupled to phenotypic screens, directed by temporally-resolved phosphoproteomics.
View Article and Find Full Text PDFConventional protein kinase C (cPKC) isozymes tune the signaling output of cells, with loss-of-function somatic mutations associated with cancer and gain-of-function germline mutations identified in neurodegeneration. PKC with impaired autoinhibition is removed from the cell by quality-control mechanisms to prevent the accumulation of aberrantly active enzyme. Here, we examine how a highly conserved residue in the C1A domain of cPKC isozymes permits quality-control degradation when mutated to histidine in cancer (PKCβ-R42H) and blocks down-regulation when mutated to proline in the neurodegenerative disease spinocerebellar ataxia (PKCγ-R41P).
View Article and Find Full Text PDFConventional protein kinase C (PKC) isozymes tune the signaling output of cells, with loss-of-function somatic mutations associated with cancer and gain-of-function germline mutations identified in neurodegeneration. PKC with impaired autoinhibition is removed from the cell by quality-control mechanisms to prevent accumulation of aberrantly active enzyme. Here, we examine how a single residue in the C1A domain of PKCβ, arginine 42 (R42), permits quality-control degradation when mutated to histidine in cancer (R42H) and blocks downregulation when mutated to proline in the neurodegenerative disease spinocerebellar ataxia (R42P).
View Article and Find Full Text PDFProtein kinase C (PKC) family members are multi-domain proteins whose function is exquisitely tuned by interdomain interactions that control the spatiotemporal dynamics of their signaling. Despite extensive mechanistic studies on this family of enzymes, no structure of a full-length enzyme that includes all domains has been solved. Here, we take into account the biochemical mechanisms that control autoinhibition, the properties of each individual domain, and previous structural studies to propose a unifying model for the general architecture of PKC family members.
View Article and Find Full Text PDFOxygen consumption is oftentimes used as a proxy for metabolic rate. However, pupfish acclimated to ecologically relevant temperatures may employ extended periods of anaerobism despite the availability of oxygen-a process we called paradoxical anaerobism. In this study, we evaluated data from pupfish exhibiting stable oxygen consumption.
View Article and Find Full Text PDFConventional protein kinase C (PKC) family members are reversibly activated by binding to the second messengers Ca and diacylglycerol, events that break autoinhibitory constraints to allow the enzyme to adopt an active, but degradation-sensitive, conformation. Perturbing these autoinhibitory constraints, resulting in protein destabilization, is one of many mechanisms by which PKC function is lost in cancer. Here, we address how a gain-of-function germline mutation in PKCα in Alzheimer's disease (AD) enhances signaling without increasing vulnerability to down-regulation.
View Article and Find Full Text PDFJ Exp Zool A Ecol Genet Physiol
October 2016
The habitat of the critically endangered Devils Hole Pupfish, Cyprinodon diabolis is marked by constant high temperatures and low oxygen availability. In order to explore the effects of these conditions on development and recruitment of eggs in Devils Hole, we tested the effects of two ecologically relevant temperatures on the development, hatch success, and oxygen consumption of eggs from a refuge population of pupfish derived from C. diabolis and eggs from its close sister species, Cyprinodon nevadensis mionectes.
View Article and Find Full Text PDF