The spectroscopy and UV photodissociation dynamics of Cu2 and CuO have been studied using a combination of one- and two-colour excitation and velocity map imaging. Resonant excitation of Cu2 via the J ← X (1)Σg(+) transition leads to significant fragmentation which is interpreted in terms of a combination of direct dissociation of Cu2(+ 2)Π produced in the resonant two-photon ionization process and dissociation of excited Cu2 states above the ionization threshold. By fitting of the kinetic energy release spectra obtained from the velocity map images, we determine a value for the dissociation energy of the cation of D0 (Cu2(+), X (2)Σg(+)) of 1.
View Article and Find Full Text PDFThis collaboration has recently shown that infrared excitation can drive decomposition reactions of molecules on the surface of gas-phase transition metal clusters. We describe here a significant extension of this work to the study of bimolecular reactions initiated in a similar manner. Specifically, we have observed the infrared activated CO oxidation reaction (CO(ads) + O(ads) --> CO2(g)) on isolated platinum oxide cations, Pt(n)O(m)+.
View Article and Find Full Text PDFThe structures of small gas-phase Pt(n)O(2m)(+) (n = 1-6, m = 1, 2) cluster cations have been investigated in a combined infrared multiple photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) study. On the basis of the infrared spectra obtained, it is concluded that in most clusters oxygen is bound dissociatively, preferring 2-fold bridge binding motifs, sometimes combined with singly coordinated terminal binding. Comparison of the oxide cluster structures with those of bare cationic platinum clusters reported previously reveals major structural changes induced in the platinum core upon oxygen binding.
View Article and Find Full Text PDF