Publications by authors named "Alexander Bukreyev"

Prevention of severe COVID-19 disease by SARS-CoV-2 in high-risk patients, such as immuno-compromised individuals, can be achieved by administration of antibody prophylaxis, but producing antibodies can be costly. Plant expression platforms allow substantial lower production costs compared to traditional bio-manufacturing platforms depending on mammalian cells in bioreactors. In this study, we describe the expression, production and purification of the originally human COVA2-15 antibody in plants.

View Article and Find Full Text PDF
Article Synopsis
  • Ebolaviruses can spread to nearby cells through interconnections, and this study outlines a method to measure this spread using immunofluorescence.
  • The protocol includes steps for preparing cells, infecting them with Bundibugyo virus, and using a neutralizing antibody.
  • It also explains a quantitative microscopy method that addresses the challenge of strong fluorescence signals around cell membranes, which can interfere with accurate measurement.
View Article and Find Full Text PDF
Article Synopsis
  • - The research focuses on developing pan-coronavirus interventions by identifying 50 antibodies from human B cells, particularly highlighting the antibody 54043-5, which binds to a common part of spike proteins in various coronaviruses.
  • - A structural analysis revealed that 54043-5 recognizes a specific, highly conserved region of the S2 subunit in SARS-CoV-2, which is critical for understanding how this antibody can potentially provide protection.
  • - Although 54043-5 does not neutralize the virus directly, it activates immune responses that help combat infections, and certain modifications to this antibody showed protective effects in mouse models of SARS-CoV-2 disease.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focused on developing an mRNA vaccine for the Andes virus (ANDV) using two types of mRNA: regular uridine (U-mRNA) and N1-methylpseudouridine (m1Ψ-mRNA).
  • - Mice showed better immune responses with the m1Ψ-mRNA, but both mRNA types led to similar activation and effective antibody responses in subsequent tests with Syrian hamsters.
  • - The results indicate that the U-mRNA construct produced higher glycoprotein-binding antibodies, yet both vaccines effectively protected rodents from a lethal ANDV challenge, showing the vaccine's potential despite subtle differences.
View Article and Find Full Text PDF

Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system remains unclear.

View Article and Find Full Text PDF

The first-ever recent Marburg virus (MARV) outbreak in Ghana, West Africa and Equatorial Guinea has refocused efforts towards the development of therapeutics since no vaccine or treatment has been approved. mRNA vaccines were proven successful in a pandemic-response to severe acute respiratory syndrome coronavirus-2, making it an appealing vaccine platform to target highly pathogenic emerging viruses. Here, 1-methyl-pseudouridine-modified mRNA vaccines formulated in lipid nanoparticles (LNP) were developed against MARV and the closely-related Ravn virus (RAVV), which were based on sequences of the glycoproteins (GP) of the two viruses.

View Article and Find Full Text PDF

is a family of negative-sense RNA viruses with genomes of about 13.1-20.9 kb that infect fish, mammals and reptiles.

View Article and Find Full Text PDF

Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells.

View Article and Find Full Text PDF

Antibodies provide critical protective immunity against COVID-19, and the Fc-mediated effector functions and mucosal antibodies also contribute to the protection. To expand the characterization of humoral immunity stimulated by subunit protein-peptide COVID-19 vaccine UB-612, preclinical studies in non-human primates were undertaken to investigate mucosal secretion and the effector functionality of vaccine-induced antibodies in antibody-dependent monocyte phagocytosis (ADMP) and antibody-dependent NK cell activation (ADNKA) assays. In cynomolgus macaques, UB-612 induced potent serum-neutralizing, RBD-specific IgG binding, ACE2 binding-inhibition antibodies, and antibodies with Fc-mediated effector functions in ADMP and ADNKA assays.

View Article and Find Full Text PDF

Ebola virus (EBOV) and Bundibugyo virus (BDBV) belong to the family Filoviridae and cause a severe disease in humans. We previously isolated a large panel of monoclonal antibodies from B cells of human survivors from the 2007 Uganda BDBV outbreak, 16 survivors from the 2014 EBOV outbreak in the Democratic Republic of the Congo, and one survivor from the West African 2013-2016 EBOV epidemic. Here, we demonstrate that EBOV and BDBV are capable of spreading to neighboring cells through intercellular connections in a process that depends upon actin and T cell immunoglobulin and mucin 1 protein.

View Article and Find Full Text PDF

Intranasal vaccination represents a promising approach for preventing disease caused by respiratory pathogens by eliciting a mucosal immune response in the respiratory tract that may act as an early barrier to infection and transmission. This study investigated immunogenicity and protective efficacy of intranasally administered messenger RNA (mRNA)-lipid nanoparticle (LNP) encapsulated vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Syrian golden hamsters. Intranasal mRNA-LNP vaccination systemically induced spike-specific binding [immunoglobulin G (IgG) and IgA] and neutralizing antibodies.

View Article and Find Full Text PDF

Lassa virus is a member of the Arenaviridae family, which causes human infections ranging from asymptomatic to severe hemorrhagic disease with a high case fatality rate. We have designed and generated lipid nanoparticle encapsulated, modified mRNA vaccines that encode for the wild-type Lassa virus strain Josiah glycoprotein complex or the prefusion stabilized conformation of the Lassa virus glycoprotein complex. Hartley guinea pigs were vaccinated with two 10 µg doses, 28 days apart, of either construct.

View Article and Find Full Text PDF

Inflammation and cytopenia are commonly observed during Ebola virus (EBOV) infection; however, mechanisms responsible for EBOV-induced cell death remain obscure. While apoptosis and necrosis are already identified as mechanisms of cell death induced by the virus, our study demonstrates that THP-1 monocytes and SupT1 T cells exposed to EBOV undergo pyroptosis and necroptosis, respectively, through a direct contact with EBOV, and also mediate pyroptosis or necroptosis of uninfected bystander cells via indirect effects associated with secreted soluble factors. These results emphasize novel aspects of interactions between EBOV and immune cell populations and provide a better understanding of the immunopathogenesis of EBOV disease.

View Article and Find Full Text PDF
Article Synopsis
  • In April 2023, the International Committee on Taxonomy of Viruses (ICTV) approved changes to the phylum's classification during their annual vote.
  • The update included the addition of one new family, 14 new genera, and 140 new species.
  • Additionally, the taxonomy featured the renaming of two genera and 538 species, along with the removal of one species and the abolition of four others.
View Article and Find Full Text PDF

The International Committee on Taxonomy of Viruses (ICTV) Filoviridae Study Group continues to prospectively refine the established nomenclature for taxa included in family Filoviridae in an effort to decrease confusion of genus, species, and virus names and to adhere to amended stipulations of the International Code of Virus Classification and Nomenclature (ICVCN). Recently, the genus names Ebolavirus and Marburgvirus were changed to Orthoebolavirus and Orthomarburgvirus, respectively. Additionally, all established species names in family Filoviridae now adhere to the ICTV-mandated binomial format.

View Article and Find Full Text PDF

Background: Ebolaviruses Ebola (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) cause severe human disease, which may be accompanied by hemorrhagic syndrome, with high case fatality rates. Monovalent vaccines do not offer cross-protection against these viruses whose endemic areas overlap. Therefore, development of a panebolavirus vaccine is a priority.

View Article and Find Full Text PDF

The Ebola virus (EBOV) transcriptional regulation involves host protein phosphatases PP1 and PP2A, which dephosphorylate the transcriptional cofactor of EBOV polymerase VP30. The 1E7-03 compound, which targets PP1, induces VP30 phosphorylation and inhibits EBOV infection. This study aimed to investigate the role of PP1 in EBOV replication.

View Article and Find Full Text PDF
Article Synopsis
  • Ebolavirus species vary in their ability to cause disease in humans, with Ebola (EBOV) being the most dangerous, followed by Bundibugyo (BDBV) and Reston (RESTV), which is not harmful to humans.
  • The VP24 protein from these viruses interferes with the immune response by blocking signaling related to type I interferon (IFN-I), and BDBV's VP24 binds less effectively to proteins that help transport it into the cell nucleus compared to EBOV's VP24.
  • Researchers created engineered EBOV strains with mutations in the VP24 region to study their effects on immune response and found that specific mutations reduced viral growth and ability to evade immune detection, demonstrating mechanisms of reduced
View Article and Find Full Text PDF

Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system in antibody-mediated protection remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding how our body fights off new viruses, like Ebola, helps us prepare for outbreaks.
  • Scientists studied special immune cells called B cells to see how they make antibodies against the Ebola virus.
  • They found 73 types of antibodies that can fight off the virus, which can help create better vaccines and treatments in the future.
View Article and Find Full Text PDF

Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure.

View Article and Find Full Text PDF

The Marburg and Ebola filoviruses cause a severe, often fatal, disease in humans and nonhuman primates but have only subclinical effects in bats, including Egyptian rousettes, which are a natural reservoir of Marburg virus. A fundamental question is why these viruses are highly pathogenic in humans but fail to cause disease in bats. To address this question, we infected one cohort of Egyptian rousette bats with Marburg virus and another cohort with Ebola virus and harvested multiple tissues for mRNA expression analysis.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seen multiple anti-SARS-CoV-2 antibodies being generated globally. It is difficult, however, to assemble a useful compendium of these biological properties if they are derived from experimental measurements performed at different sites under different experimental conditions. The Coronavirus Immunotherapeutic Consortium (COVIC) circumvents these issues by experimentally testing blinded antibodies side by side for several functional activities.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) infection is a major cause of severe lower respiratory tract infection and death in young infants and the elderly. With no effective prophylactic treatment available, current vaccine candidates aim to elicit neutralizing antibodies. However, binding and neutralization have poorly predicted protection in the past, and accumulating data across epidemiologic cohorts and animal models collectively point to a role for additional antibody Fc-effector functions.

View Article and Find Full Text PDF