Publications by authors named "Alexander Broad"

The classical model of crystal growth assumes that kinks grow via a sequence of independent adsorption events where each solute transitions from the solution directly to the crystal lattice site. Here, we challenge this view by showing that some calcite kinks grow via a multistep mechanism where the solute adsorbs to an intermediate site and only transitions to the lattice site upon the adsorption of a second solute. We compute the free energy curves for Ca and CO ions adsorbing to a large selection of kink types, and we identify kinks terminated both by Ca ions and by CO ions that grow in this multistep way.

View Article and Find Full Text PDF

Calcite crystals grow by means of molecular steps that develop on {10.4} faces. These steps can arise stochastically via two-dimensional (2D) nucleation or emerge steadily from dislocations to form spiral hillocks.

View Article and Find Full Text PDF

Incorporation of guest additives within inorganic single crystals offers a unique strategy for creating nanocomposites with tailored properties. While anionic additives have been widely used to control the properties of crystals, their effective incorporation remains a key challenge. Here, we show that cationic additives are an excellent alternative for the synthesis of nanocomposites, where they are shown to deliver exceptional levels of incorporation of up to 70 wt % of positively charged amino acids, polymer particles, gold nanoparticles, and silver nanoclusters within inorganic single crystals.

View Article and Find Full Text PDF

The brittlestar Ophiocoma wendtii is theorised to employ a technique already used in metallurgy in order to optimise the mechanical properties of calcitic microlenses within their skeletons. These microlenses contain arrays of Mg-rich nanoprecipitates, which are proposed to inhibit crack propagation through the compression of the local host lattice. Here, we employ classical molecular dynamics in order to study the effects of Mg-rich nanoprecipitates on lattice strain, stress distributions and crack propagation in calcite.

View Article and Find Full Text PDF

Acidic macromolecules are traditionally considered key to calcium carbonate biomineralisation and have long been first choice in the bio-inspired synthesis of crystalline materials. Here, we challenge this view and demonstrate that low-charge macromolecules can vastly outperform their acidic counterparts in the synthesis of nanocomposites. Using gold nanoparticles functionalised with low charge, hydroxyl-rich proteins and homopolymers as growth additives, we show that extremely high concentrations of nanoparticles can be incorporated within calcite single crystals, while maintaining the continuity of the lattice and the original rhombohedral morphologies of the crystals.

View Article and Find Full Text PDF

Assistive robotic manipulators have the potential to improve the lives of people with motor impairments. They can enable individuals to perform activities such as pick-and-place tasks, opening doors, pushing buttons, and can even provide assistance in personal hygiene and feeding. However, robotic arms often have more degrees of freedom (DoF) than the dimensionality of their control interface, making them challenging to use-especially for those with impaired motor abilities.

View Article and Find Full Text PDF