Transcatheter heart valve replacements (TVR) are mostly designed in a closed position (c) with leaflets coaptating. However, recent literature suggests fabricating valves in semi-closed (sc) position to minimize pinwheeling. With about 100,000 children in need of a new pulmonary valve each year worldwide, this study evaluates both geometrical approaches in adult as well as pediatric size and condition.
View Article and Find Full Text PDFBackground: Current heart valve implants entail major disadvantages in the treatment for younger patients or those with congenital heart defects.
Aim: Evaluation of novel transcatheter pulmonary valve implant made from autologous pericardium with natural crosslinking agent in an in vitro setup and in vivo animal model METHODS: Valves were tested in a pulse duplicator according to ISO-standard 5840. For in vivo studies computer tomography was performed to measure sheep's native pulmonary valve dimensions.
Biological bioprostheses such as grafts, patches, and heart valves are often derived from biological tissue like the pericardium. These bioprostheses can be of xenogenic, allogeneic, or autologous origin. Irrespective of their origin, all types are pre-treated via crosslinking to render the tissue non-antigenic and mechanically strong or to minimize degradation.
View Article and Find Full Text PDFTranscatheter pulmonary valve replacement has been established as a viable alternative approach for patients suffering from right ventricular outflow tract or bioprosthetic valve dysfunction, with excellent early and late clinical outcomes. However, clinical challenges such as stented heart valve deterioration, coronary occlusion, endocarditis, and other complications must be addressed for lifetime application, particularly in pediatric patients. To facilitate the development of a lifelong solution for patients, transcatheter autologous pulmonary valve replacement was performed in an adult sheep model.
View Article and Find Full Text PDFThe measurements of the right ventricle (RV) and pulmonary artery (PA), for selecting the optimal prosthesis size for transcatheter pulmonary valve replacement (TPVR), vary considerably. Three-dimensional (3D) computed tomography (CT) imaging for device size prediction is insufficient to assess the displacement of the right ventricular outflow tract (RVOT) and PA, which could increase the risk of stent misplacement and paravalvular leak. The aim of this study is to provide a dynamic model to visualize and quantify the anatomy of the RVOT to PA over the entire cardiac cycle by four-dimensional (4D) cardiac CT reconstruction to obtain an accurate quantitative evaluation of the required valve size.
View Article and Find Full Text PDF