When cultivating on wheat bran or deactivated fungal mycelium as a model of "natural growth", the ability of to synthesize extracellular L-lysine-α-oxidase (LysO) simultaneously with cell-wall-degrading enzymes (proteases, xylanase, glucanases, chitinases, etc.), responsible for mycoparasitism, was shown. LysO, in turn, causes the formation of HO and pipecolic acid.
View Article and Find Full Text PDFFor the first time, by atomic force microscopy (AFM) methods, micro- and nanofragments of micronized powder elastomeric modifier (PEM) formed at the short-term (3 min at 160 °C) interaction of PEM with hot bitumen have been demonstrated. It is the technology of high-temperature shear-induced grinding of a worn-out tire's crumb rubber or its co-grinding with styrene-butadiene-styrene (SBS) block copolymer which provides the creation of the PEM structure inclined to rapid degradation in hot bitumen. The formation just after the preparation process of a new structure of a modified binder, more resistant to external effects, is supported by the data of rheological tests.
View Article and Find Full Text PDFStructural features of crumb rubber (CR) particles obtained by grinding on rollers and ultra-disperse powder elastomeric modifiers (PEM) obtained by high-temperature shear-induced grinding (HTSG) of CR or co-grinding with butadiene styrene thermoplastic elastomer (SBS) have been studied by electron and optical microscopy methods. Samples of modified bitumen were obtained at different mixing times (1-40 min) in a wide temperature range (120-180 °C). The products of interaction of PEM with hot bitumen precipitated on filters when washed with solvent from modified bitumen (MB) were studied by scanning electron microscopy (SEM).
View Article and Find Full Text PDF