Background: Contrast-enhanced mammography (CEM) is an emerging breast imaging modality. Clinical data is scarce.
Objectives: To summarize clinical evidence on the use of iopromide in CEM for the detection or by systematically analyzing the available literature on efficacy and safety.
The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief, and for monitoring of disease progression. Topical application of drug-loaded nanoparticles for the treatment of skin disorders is a promising strategy to overcome the stratum corneum, the upper layer of the skin, which represents an effective physical and biochemical barrier. The understanding of drug penetration into skin and enhanced penetration into skin facilitated by nanocarriers requires analytical tools that ideally allow to visualize the skin, its morphology, the drug carriers, drugs, their transport across the skin and possible interactions, as well as effects of the nanocarriers within the different skin layers.
View Article and Find Full Text PDFExtrinsic (photo) aging accelerates chronologically aging in the skin due to cumulative UV irradiation. Despite recent insights into the molecular mechanisms of fibroblast aging, age-related changes of the skin barrier function have been understudied. In contrast, the constantly increasing subpopulation of aged patients causes a clinical need for effective and safe (dermatological) treatment.
View Article and Find Full Text PDFThe emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial.
View Article and Find Full Text PDFNanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality.
View Article and Find Full Text PDFDrug loading capacity in nanostructured lipid carriers (NLC) depends on the formation of nanostructures within the lipid matrix. However, investigation of these nanostructures with sizes below the diffraction limit of visible light is quite challenging. Thus, until now the determination of structures and drug distribution within NLCs was not possible.
View Article and Find Full Text PDFInteractions of nanoparticles with biomaterials determine the biological activity that is key for the physiological response. Dendritic polyglycerol sulfates (dPGS) were found recently to act as an inhibitor of inflammation by blocking selectins. Systemic application of dPGS would present this nanoparticle to various biological molecules that rapidly adsorb to the nanoparticle surface or lead to adsorption of the nanoparticle to cellular structures such as lipid membranes.
View Article and Find Full Text PDFHyaluronic acid (HA) hydrogels are interesting delivery systems for topical applications. Besides moisturizing the skin and improving wound healing, HA facilitates topical drug absorption and is highly compatible with labile biomacromolecules. Hence, in this study we investigated the influence of HA hydrogels with different molecular weights (5 kDa, 100 kDa, 1 MDa) on the skin absorption of the model protein bovine serum albumin (BSA) using fluorescence lifetime imaging microscopy (FLIM).
View Article and Find Full Text PDFWe report here on the application of laser-based single molecule total internal reflection fluorescence microscopy (TIRFM) to study the penetration of molecules through the skin. Penetration of topically applied drug molecules is often observed to be limited by the size of the respective drug. However, the molecular mechanisms which govern the penetration of molecules through the outermost layer of the skin are still largely unknown.
View Article and Find Full Text PDFThe increasing interest and recent developments in nanotechnology pose previously unparalleled challenges in understanding the effects of nanoparticles on living tissues. Despite significant progress in in vitro cell and tissue culture technologies, observations on particle distribution and tissue responses in whole organisms are still indispensable. In addition to a thorough understanding of complex tissue responses which is the domain of expert pathologists, the localization of particles at their sites of interaction with living structures is essential to complete the picture.
View Article and Find Full Text PDFThe skin is a potential site of entry for nanoparticles (NP) but the role of disease-associated barrier disturbances on the path and extent of skin penetration of NP remains to be characterized. Silica nanoparticles (SiO2-NP) possess promising potential for various medical applications. Here, effects of different skin barrier disruptions on the penetration of N-(6-aminohexyl)-aminopropyltrimethoxysilane (AHAPS) functionalized SiO2-NP were studied.
View Article and Find Full Text PDFA growing intended or accidental exposure to nanoparticles asks for the elucidation of potential toxicity linked to the penetration of normal and lesional skin. We studied the skin penetration of dye-tagged dendritic core-multishell (CMS) nanotransporters and of Nile red loaded CMS nanotransporters using fluorescence microscopy. Normal and stripped human skin ex vivo as well as normal reconstructed human skin and in vitro skin disease models served as test platforms.
View Article and Find Full Text PDFThe molecular dynamics of polymeric nanocarriers is an important parameter for controlling the interaction of nanocarrier branches with cargo. Understanding the interplay of dendritic polymer dynamics, temperature, and cargo molecule interactions should provide valuable new insight for tailoring the dendritic architecture to specific needs in nanomedicine, drug, dye, and gene delivery. Here, we have investigated polyglycerol-based core-multishell (CMS) nanotransporters with incorporated Nile Red as a fluorescent drug mimetic and CMS nanotransporters with a covalently bound fluorophore (Indocarbocyanine) using fluorescence spectroscopy methods.
View Article and Find Full Text PDF