Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) is a steroid synthetic enzyme expressed in ovarian granulosa cells and placental syncytiotrophoblasts. Here, HSD17B1 serum concentration was measured with a validated immunoassay during pregnancy at three time points (12-14, 18-20 and 26-28 weeks of gestation). The concentration increased 2.
View Article and Find Full Text PDFObjectives: Although deep learning has demonstrated substantial potential in automatic quantification of joint damage in RA, evidence for detecting longitudinal changes at an individual patient level is lacking. Here, we introduce and externally validate our automated RA scoring algorithm (AuRA), and demonstrate its utility for monitoring radiographic progression in a real-world setting.
Methods: The algorithm, originally developed during the Rheumatoid Arthritis 2-Dialogue for Reverse Engineering Assessment and Methods (RA2-DREAM) challenge, was trained to predict expert-curated Sharp-van der Heijde total scores in hand and foot radiographs from two previous clinical studies (n = 367).
This study aims to develop and validate a modeling framework to predict long-term weight change on the basis of self-reported weight data. The aim is to enable focusing resources of health systems on individuals that are at risk of not achieving their goals in weight loss interventions, which would help both health professionals and the individuals in weight loss management. The weight loss prediction models were built on 327 participants, aged 21-78, from a Finnish weight coaching cohort, with at least 9 months of self-reported follow-up weight data during weight loss intervention.
View Article and Find Full Text PDFMucus is a complex hydrogel that acts as a protective barrier in various parts of the human body. Both composition and structural properties play a crucial role in maintaining barrier properties while dictating diffusion of molecules and (nano)materials. In this study, we compare previously described mucus surrogates with the native human airway and pig intestinal mucus.
View Article and Find Full Text PDFBackground: Messenger RNA (mRNA) has gained remarkable attention as an alternative to DNA-based therapies in biomedical research. A variety of biodegradable nanoparticles (NPs) has been developed including lipid-based and polymer-based systems for mRNA delivery. However, both systems still lack in achieving an efficient transfection rate and a detailed understanding of the mRNA transgene expression kinetics.
View Article and Find Full Text PDFAmphiphilic polymer-based drug delivery systems hold potential in enhancing pharmacokinetics and therapeutic efficacy due to their ability to simultaneously codeliver different drugs in a controlled manner. We propose here a facile method for synthesizing a new amphiphilic polymer, farnesylated glycol chitosan (FGC), which self-assembles into nanoparticles upon being dispersed in aqueous media. The characteristics of FGC nanoparticles, in particular the size, could be tuned in a range from 200 to 500 nm by modulating the degree of farnesylation and the pH and polymer concentration during particle preparation.
View Article and Find Full Text PDFTranslation of mRNA sequences into proteins typically starts at an AUG triplet. In rare cases, translation may also start at alternative non-AUG codons located in the annotated 5' UTR which leads to an increased regulatory complexity. Since ribosome profiling detects translational start sites at the nucleotide level, the properties of these start sites can then be used for the statistical evaluation of functional open reading frames.
View Article and Find Full Text PDFPost-endosymbiotic evolution of the proto-chloroplast was characterized by gene transfer to the nucleus. Hence, most chloroplast proteins are nuclear-encoded and the regulation of chloroplast functions includes nuclear transcriptional control. The expression profiles of 3292 nuclear Arabidopsis genes, most of them encoding chloroplast proteins, were determined from 101 different conditions and have been deposited at the GEO database (http://www.
View Article and Find Full Text PDFIn response to stress, plants accumulate Pro, requiring degradation after release from adverse conditions. Delta1-Pyrroline-5-carboxylate dehydrogenase (P5CDH), the second enzyme for Pro degradation, is encoded by a single gene expressed ubiquitously. To study the physiological function of P5CDH, T-DNA insertion mutants in AtP5CDH were isolated and characterized.
View Article and Find Full Text PDFAmino acids are regarded as the nitrogen 'currency' of plants. Amino acids can be taken up from the soil directly or synthesized from inorganic nitrogen, and then circulated in the plant via phloem and xylem. AtAAP3, a member of the Amino Acid Permease (AAP) family, is mainly expressed in root tissue, suggesting a potential role in the uptake and distribution of amino acids.
View Article and Find Full Text PDFThe initial stages of preprotein import into chloroplasts are mediated by the receptor GTPase Toc159. In Arabidopsis thaliana, Toc159 is encoded by a small gene family: atTOC159, atTOC132, atTOC120, and atTOC90. Phylogenetic analysis suggested that at least two distinct Toc159 subtypes, characterized by atToc159 and atToc132/atToc120, exist in plants.
View Article and Find Full Text PDFThe nuclear atpC1 gene encoding the gamma subunit of the plastid ATP synthase has been inactivated by T-DNA insertion mutagenesis in Arabidopsis thaliana. In the seedling-lethal dpa1 (deficiency of plastid ATP synthase 1) mutant, the absence of detectable amounts of the gamma subunit destabilizes the entire ATP synthase complex. The expression of a second gene copy, atpC2, is unaltered in dpa1 and is not sufficient to compensate for the lack of atpC1 expression.
View Article and Find Full Text PDFThe evolution of the endosymbiotic progenitor into the chloroplast organelle was associated with the transfer of numerous chloroplast genes into the nucleus. Hence, inter-organellar signalling, and the co-ordinated expression of sets of nuclear genes, was set up to control the metabolic and developmental status of the chloroplast. Here, we show by the differential-expression analysis of 3,292 genes, that most of the 35 environmental and genetic conditions tested, including plastid signalling mutations, elicit only three main classes of response from the nuclear chloroplast transcriptome.
View Article and Find Full Text PDFQuantification of the expression levels of nuclear genes encoding plastid proteins under different genetic or environmental conditions can contribute to the genetic dissection of plastid functions. To facilitate such measurements, a set of 1,827 Arabidopsis thaliana genes coding for plastid proteins was PCR-amplified from genomic DNA and spotted on nylon membranes to generate an array of chloroplast-specific gene-sequence-tags (GSTs). The sensitivity and reliability of the experimental system was evaluated and a procedure was developed for detecting differential gene expression.
View Article and Find Full Text PDF