The transmission of pathogens across the interface between wildlife and livestock presents a challenge to the development of effective surveillance and control measures. Wild birds, especially waterbirds such as the Anseriformes and Charadriiformes are considered to be the natural hosts of Avian Influenza (AI), and are presumed to pose one of the most likely vectors for incursion of AI into European poultry flocks. We have developed a generic quantitative risk map, derived from the classical epidemiological risk equation, to describe the relative, spatial risk of disease incursion into poultry flocks via wild birds.
View Article and Find Full Text PDFThe increase in availability of spatial data and the technological advances to handle such data allow for subsequent improvements in our ability to assess risk in a spatial setting. We provide a generic framework for quantitative risk assessments of disease introduction that capitalizes on these new data. It can be adopted across multiple spatial scales, for any pathogen, method of transmission or location.
View Article and Find Full Text PDFSalmonella spp are a major foodborne zoonotic cause of human illness. Consumption of pork products is believed to be a major source of human salmonellosis and Salmonella control throughout the food-chain is recommended. A number of on-farm interventions have been proposed, and some have been implemented in order to try to achieve Salmonella control.
View Article and Find Full Text PDFA multi-group semi-stochastic model is formulated to describe Salmonella dynamics on a pig herd within the UK and assess whether farm structure has any effect on the dynamics. The models include both direct transmission and indirect (via free-living infectious units in the environment and airborne infection). The basic reproduction number R0 is also investigated.
View Article and Find Full Text PDF