We demonstrate photon Bose-Einstein condensation (photon-BEC) at a broad temperature range that is valid also in the long 1D fiber cavity limit. It is done with an erbium-ytterbium co-doped fiber (EYDF) cavity by overcoming the challenging requirement of sublinear light dispersion for BEC in 1D using a chirped-gratings Fabry-Perot. We experimentally show with a square-root mode-dispersion, a quadratic temperature dependence of the critical power for condensation (compared to a linear dependence in finite regular fiber-cavities) between 90 K and 382 K, as the theory predicts.
View Article and Find Full Text PDFWe demonstrate a nonlinear light mode dispersion and a nonuniform frequency mode comb by a chirped fiber Bragg gratings (CFBG) Fabry-Perot (FP) at the 1550 nm wavelength regime. We give analytical expressions for the general chirp case, and an experimental demonstration with a linear chirp, showing a square-root dependence of the dispersion as a function of the FP mode number. Such sublinear dispersion is required, for example, for photon Bose-Einstein condensation (BEC) in a one-dimensional (1D) system like fiber cavities.
View Article and Find Full Text PDFBose-Einstein condensation (BEC) is a special many-boson phenomenon that was observed in atomic particles at ultra-low temperatures. Later, BEC was also shown for non-atomic bosons, such as photons. Those experiments were usually done in micron-size cavities, where the power (particle number) was varied, and not the temperature, until condensation was reached.
View Article and Find Full Text PDFWe demonstrate thermalization and Bose-Einstein (BE) distribution of photons in standard erbium-doped fibers (edf) in a broad spectral range up to ~200nm at the 1550nm wavelength regime. Our measurements were done at a room temperature ~300K and 77K. It is a special demonstration of thermalization of photons in fiber cavities and even in open fibers.
View Article and Find Full Text PDFWe present a first experimental demonstration of classical CW laser light condensation (LC) in the frequency (mode) domain that verifies its prediction (Fischer and Weill, Opt. Express20, 26704 (2012)). LC is based on weighting the modes in a noisy environment in a loss-gain measure compared to an energy (frequency) scale in Bose-Einstein condensation (BEC).
View Article and Find Full Text PDFWe present an experimental study of the stability of passively mode-locked pulses against noise in multipulse operation of an erbium-doped fiber laser. The laser properties are determined by two dimensionless combinations of the laser parameters. Measurements of the pulses' destabilization threshold as a function of those laser parameters show the optimal regions that maximize the mode-locked pulse stability.
View Article and Find Full Text PDFWe experimentally demonstrate critical behavior of a passively mode-locked laser with properties that are similar to those of gas-liquid and magnetic spin systems. The laser light modes provide a special nonthermodynamic many-body system where noise takes the role of temperature. It is also a rare opportunity of an experimental pure one-dimensional system.
View Article and Find Full Text PDFMode-locked lasers with intracavity dispersion are experimentally shown to exhibit localization behavior in their frequency domain. The localization, with its typical exponential spectrum structure, is analogous to that which occurs for the quantum kicked rotor. The experimental demonstration of our optical kicked rotor is done with a long mode-locked dispersive fiber laser.
View Article and Find Full Text PDFWe present an experimental study of the probabilistic nature of pulsation self-starting in passively mode-locked lasers. It is a Poissonian process that results from a noise-activated switching barrier. The switching rate from cw operation to pulsation when the laser pump level is turned on has an exponential dependence that is inversely proportional to the square of the laser power.
View Article and Find Full Text PDFWe present a theoretical and experimental study of multiple pulse formation in passively mode-locked lasers. Following a statistical-mechanics approach, the study yields a thermodynamic-like "phase diagram" with boundaries representing cascaded first order phase transitions. They correspond to abrupt creation or annihilation of pulses and a quantized rf power behavior, as system parameters (noise and/or pumping levels) are varied, in excellent accordance with the experiments.
View Article and Find Full Text PDFWe present an experimental demonstration of the evolution of localization in frequency of light pulses that are repeatedly kicked by phase modulation and then propagated along equally spaced lengths of fiber with weak dispersion. The experiment was performed with a long fiber recirculating loop that allows us to follow the pulse's spectral changes after each cycle.
View Article and Find Full Text PDF