The dynamic relationship between beat-to-beat mean arterial blood pressure (ABP) fluctuations and cerebral blood flow velocity (CBFV) variations have been intensively studied. The experimentally observed low coherence in the low-frequency band has previously indicated that the assumptions of linearity and/or stationarity, the preconditions of the linear transfer function analysis, are not valid in that frequency region. Latka et al.
View Article and Find Full Text PDFThe effect of spontaneous beat-to-beat mean arterial blood pressure (ABP) fluctuations and breath-to-breath end-tidal carbon dioxide (PETCO2) and end-tidal oxygen (PETO2) fluctuations on beat-to-beat cerebral bloodflow velocity (CBFV) variations is studied using a multiple coherence function. Multiple coherence is a measure of the extent to which the output, CBFV, can be represented as a linear time invariant system of multiple input signals. Analysis of experimental measurements from 13 different healthy subjects reveal that, with additional inputs, PETCO2 and PETO2, the multiple coherence for frequencies <0.
View Article and Find Full Text PDF