The HoloFood project used a hologenomic approach to understand the impact of host-microbiota interactions on salmon and chicken production by analysing multiomic data, phenotypic characteristics, and associated metadata in response to novel feeds. The project's raw data, derived analyses, and metadata are deposited in public, open archives (BioSamples, European Nucleotide Archive, MetaboLights, and MGnify), so making use of these diverse data types may require access to multiple resources. This is especially complex where analysis pipelines produce derived outputs such as functional profiles or genome catalogues.
View Article and Find Full Text PDFAn increasingly common output arising from the analysis of shotgun metagenomic datasets is the generation of metagenome-assembled genomes (MAGs), with tens of thousands of MAGs now described in the literature. However, the discovery and comparison of these MAG collections is hampered by the lack of uniformity in their generation, annotation and storage. To address this, we have developed MGnify Genomes, a growing collection of biome-specific non-redundant microbial genome catalogues generated using MAGs and publicly available isolate genomes.
View Article and Find Full Text PDFMetagenomics is a culture-independent method for studying the microbes inhabiting a particular environment. Comparing the composition of samples (functionally/taxonomically), either from a longitudinal study or cross-sectional studies, can provide clues into how the microbiota has adapted to the environment. However, a recurring challenge, especially when comparing results between independent studies, is that key metadata about the sample and molecular methods used to extract and sequence the genetic material are often missing from sequence records, making it difficult to account for confounding factors.
View Article and Find Full Text PDF