Publications by authors named "Alexander B Pupyshev"

In the treatment of experimental neurodegeneration with disaccharide trehalose, various regimens are used, predominantly a 2% solution, drunk for several weeks. We studied the effects of different regimens of dietary trehalose treatment in an amyloid-β (Aβ) 25-35-induced murine model of Alzheimer's disease (AD). Aβ-treated mice received 2% trehalose solution daily, 4% trehalose solution daily (continuous mode) or every other day (intermittent mode), to drink for two weeks.

View Article and Find Full Text PDF

Animal models of Alzheimer's disease (AD) induced by intracerebroventricular (ICV) or intrahippocampal (IH) administration of amyloid-beta (Aβ) are widely used in current research. It remains unclear whether these models provide similar outcomes or mimic pathological mechanisms of AD equally. The aim of the work was to compare two models induced by ICV or IH administration of Aβ oligomers to C57BL/6 mice.

View Article and Find Full Text PDF

Induction of autophagy is a prospective approach to the treatment of neurodegeneration. In the recent decade, trehalose attracted special attention. It is an autophagy inducer with negligible adverse effects and is approved for use in humans according to FDA requirements.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is associated with amyloid-β (Aβ) accumulation that might be hindered by autophagy. There are two ways to induce autophagy: through mTOR-dependent and mTOR-independent pathways (here, by means of rapamycin and trehalose, respectively). The aim of this study was to evaluate the contribution of these pathways and their combination to the treatment of experimental AD.

View Article and Find Full Text PDF

Autophagy attenuation has been found in neurodegenerative diseases, aging, diabetes mellitus, and atherosclerosis. In experimental models of neurodegenerative diseases, the correction of autophagy in the brain reverses neuronal and behavioral deficits and hence seems to be a promising therapy for neuropathologies. Our aim was to study the effect of an autophagy inducer, trehalose, on brain autophagy and behavior in a genetic model of diabetes with signs of neuronal damage (db/db mice).

View Article and Find Full Text PDF

The neuroprotective effect of autophagy activation by rapamycin and trehalose was studied in a mouse model of Parkinson's disease (PD) induced by neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Both rapamycin (10 mg/kg/day, 7 days) and trehalose (2% in drinking water, 7 days) increased the expression of LC3-II (a marker of autophagy activation) in the frontal cortex and striatum of normal C57Bl/6J mice, with signs of an additive effect. Autophagy stimulation in the striatum was confirmed by a lysosomal osmotic test.

View Article and Find Full Text PDF

Transgenic overexpression of α-synuclein is a common model of Parkinson's disease (PD). Accumulation of А53Т-mutant α-synuclein induces three autophagy cell responses: the inhibition of autophagy caused by the accumulation of α-synuclein, compensatory activation of macroautophagy in response to inhibition of the chaperone-mediated autophagy, and toxic effects of mutant α-synuclein accompanied by the activation of autophagy. The overall effect of long-term overexpression of mutant α-synuclein in vivo remains unclear.

View Article and Find Full Text PDF