Sea spray aerosol (SSA) formation have a major role in the climate system, but measurements at a global-scale of this micro-scale process are highly challenging. We measured high-resolution temporal patterns of SSA number concentration over the Atlantic Ocean, Caribbean Sea, and the Pacific Ocean covering over 42,000 km. We discovered a ubiquitous 24-hour rhythm to the SSA number concentration, with concentrations increasing after sunrise, remaining higher during the day, and returning to predawn values after sunset.
View Article and Find Full Text PDFThe extent of droplet clustering in turbulent clouds has remained largely unquantified, and yet is of possible relevance to precipitation formation and radiative transfer. To that end, data gathered by an airborne holographic instrument are used to explore the three-dimensional spatial statistics of cloud droplet positions in homogeneous stratiform boundary-layer clouds. The three-dimensional radial distribution functions g(r) reveal unambiguous evidence of droplet clustering.
View Article and Find Full Text PDFWe examine distance record setting by a random walker in the presence of a measurement error δ and additive noise γ and show that the mean number of (upper) records up to n steps still grows universally as (R(n)) ~ n(1/2) for large n for all jump densities, including Lévy distributions, and for all δ and γ. In contrast, the pace of record setting, measured by the amplitude of the n(1/2) growth, depends on δ and γ. In the absence of noise (γ=0), the amplitude S(δ) is evaluated explicitly for arbitrary jump distributions and it decreases monotonically with increasing δ whereas, in the case of perfect measurement (δ=0), the corresponding amplitude T(γ) increases with γ.
View Article and Find Full Text PDFData from four Fermi-detected gamma-ray bursts (GRBs) are used to set limits on spectral dispersion of electromagnetic radiation across the Universe. The analysis focuses on photons recorded above 1 GeV for Fermi-detected GRB 080916C, GRB 090510A, GRB 090902B, and GRB 090926A because these high-energy photons yield the tightest bounds on light dispersion. It is shown that significant photon bunches in GRB 090510A, possibly classic GRB pulses, are remarkably brief, an order of magnitude shorter in duration than any previously claimed temporal feature in this energy range.
View Article and Find Full Text PDFThe spatial phase resulting from the digital reconstruction of an in-line hologram of a particle field is shown to yield a unique pattern that can be used for particle detection. This phase signature is present only when viewed along with the reference light. The existence of the phase pattern is verified computationally and confirmed in laboratory experiments with holograms of calibrated glass spheres.
View Article and Find Full Text PDFPoor axial precision caused, in part, by large depth of focus (tau) has been a vexing problem in extraction of particle position from digital in-line holograms. A simple method is proposed to combat this depth-of-focus difficulty. The method is based on decoupling of size and position information.
View Article and Find Full Text PDF