In this work, we demonstrate the first pulsed electron paramagnetic resonance (EPR) experiments performed under magic angle spinning (MAS) at high magnetic field. Unlike nuclear magnetic resonance (NMR) and dynamic nuclear polarization (DNP), commonly performed at high magnetic fields and under MAS to maximize sensitivity and resolution, EPR is usually measured at low magnetic fields and, with the exception of the Spiess group work in the late 1990s, never under MAS, due to great instrumentational challenges. This hampers the investigation of DNP mechanisms, in which electron spin dynamics play a central role, because no experimental data about the latter under DNP-characteristic conditions are available.
View Article and Find Full Text PDFHigh-field electron paramagnetic resonance (EPR) measurements are indispensable for a better understanding of dynamic nuclear polarization (DNP), which relies on polarization transfer between electron and nuclear spins. DNP experiments are typically performed at high > 7 T magnetic fields and low ≤ 100 K temperatures, while EPR instrumentation capable of EPR measurements under these conditions is scarce. In this paper, we describe the CW EPR capabilities of a dual DNP/EPR spectrometer that is designed to carry out EPR experiments under "DNP conditions" at 14 and 7 T.
View Article and Find Full Text PDFGC-MS usually employs a 70 eV electron ionization (EI) ion source, which provides mass spectra with detailed fragment ion information that are amenable for library search and identification with names and structures at the isomer level. However, conventional EI often suffers from low intensity or the absence of molecular ions, which reduces detection and identification capabilities in analyses. In an attempt to enhance the molecular ions, several softer ion sources are being used to supplement standard EI, including chemical ionization (CI), atmospheric pressure chemical ionization (APCI), field ionization (FI), photoionization (PI), and low electron energy EI.
View Article and Find Full Text PDFCannabis extracts and products were analyzed by gas chromatography-mass spectrometry (GC-MS) with Cold EI for their full content including terpenes, sesquiterpenes, sesquiterpinols, fatty acids, delta 9-tetrahydrocannabinol (THC), cannabidiol (CBD), other cannabinoids, hydrocarbons, sterols, diglycerides, triglycerides, and impurities. GC-MS with Cold EI is based on interfacing GC and MS with supersonic molecular beams (SMB) along with electron ionization of vibrationally cold sample compounds in the SMB in a fly-through ion source (hence the name Cold EI). GC-MS with Cold EI improves all the performance aspects of GC-MS, enables the analysis of Cannabinoids with OH groups without derivatization, while providing enhanced molecular ions for improved identification, and enables internal quantitation without calibration.
View Article and Find Full Text PDFPharmaceuticals require careful and precise determination of their impurities that might harm the user upon consumption. Although today, the most common technique for impurities identification is liquid chromatography-mass spectrometry (LC-MS/MS), it has several downsides due to the nature of the ionization method. Also, the analyses in many cases are targeted thus despite being present, some of the compounds will not be revealed.
View Article and Find Full Text PDFA new type of photoionization ion source was developed for the ionization of cold molecules in supersonic molecular beams (named Cold PI). The system was based on a GC-MS with supersonic molecular beams and its fly-through EI of cold molecules ion source (Cold EI) plus quadrupole mass analyzer. A continuously operated deuterium VUV photoionization lamp was added and placed above and between the supersonic nozzle and skimmer whereas the Cold EI ion source served only as a portion of the ion transfer ion optics.
View Article and Find Full Text PDFA new instrument that bridges the gap between gas chromatography (GC) and liquid chromatography (LC) mass spectrometry (MS) was developed. In this instrument GC-MS and electron ionization LC-MS were combined in one MS system with method based mode changing. The LC pneumatic spray formation interface to MS was mounted on top of an otherwise unused GC detector slot and was connected with a flow restriction capillary to the MS through the GC oven and into the MS transfer line, parallel to the GC capillary column.
View Article and Find Full Text PDFWe report the finding of doubly charged molecular ions in a range of relatively large molecules including hydrocarbons upon their electron ionization as vibrationally cold molecules in supersonic molecular beams (SMB) (also named as Cold EI). Furthermore, we also report the detection by mass spectrometry of triply charged molecular ions in large PAHs such as decacyclene and ovalene upon their cooling in SMB. We found that the relative abundance of doubly charged molecular ions strongly depends on the internal vibrational cooling.
View Article and Find Full Text PDFJ Chromatogr A
February 2020
Conventional gas chromatography - mass spectrometry (GC-MS) takes 20-40 min per sample, which is undesirably slow in any application if speed can be increased while still meeting analytical needs. In this study, we achieved reasonably good separations with full analysis cycle times of less than 1 min by combining for the first time low-pressure (LP) GC-MS with low thermal mass (LTM) resistive-heating for rapid temperature ramping and cooling of the capillary column. The analytical column is threaded into the LTM thin-walled metal tubing in an instrumental device known as "LTM Fast GC" that is mounted at the top of the gas chromatograph in a detector port.
View Article and Find Full Text PDFA new type of electron ionization LC-MS with supersonic molecular beams (EI-LC-MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary.
View Article and Find Full Text PDFA new type of low thermal mass (LTM) fast gas chromatograph (GC) was designed and operated in combination with gas chromatography mass spectrometry (GC-MS) with supersonic molecular beams (SMB), including GC-MS-MS with SMB, thereby providing a novel combination with unique capabilities. The LTM fast GC is based on a short capillary column inserted inside a stainless steel tube that is resistively heated. It is located and mounted outside the standard GC oven on its available top detector port, while the capillary column is connected as usual to the standard GC injector and supersonic molecular beam interface transfer line.
View Article and Find Full Text PDFMalaria is one of the most widespread and deadly diseases on the planet. Every year, about 500 million new cases are diagnosed, and the annual death toll is about 3 million. Primaquine has strong antiparasitic effects against gametocytes and can therefore prevent the spread of the parasite from treated patients to mosquitoes.
View Article and Find Full Text PDFPulsed flow modulation (PFM) two-dimensional comprehensive gas chromatography (GC x GC) was combined with quadrupole-based mass spectrometry (MS) via a supersonic molecular beam (SMB) interface using a triple-quadrupole system as the base platform, which enabled tandem mass spectrometry (MS-MS). PFM is a simple GC x GC modulator that does not consume cryogenic gases while providing tunable second GC x GC column injection time for enabling the use of quadrupole-based mass spectrometry regardless its limited scanning speed. The 20-ml/min second column flow rate involved with PFM is handled, splitless, by the SMB interface without affecting the sensitivity.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
September 2008
A major benefit of gas chromatography/mass spectrometry (GC/MS) with a supersonic molecular beam (SMB) interface and its fly-through ion source is the ability to obtain electron ionization of vibrationally cold molecules (cold EI), which show enhanced molecular ions. However, GC/MS with an SMB also has the flexibility to perform 'classical EI' mode of operation which provides mass spectra to mimic those in commercial 70 eV electron ionization MS libraries. Classical EI in SMB is obtained through simple reduction of the helium make-up gas flow rate, which reduces the SMB cooling efficiency; hence the vibrational temperatures of the molecules are similar to those in traditional EI ion sources.
View Article and Find Full Text PDFHydrocarbon analysis with standard GC-MS is confronted by the limited range of volatile compounds amenable for analysis and by the similarity of electron ionization mass spectra for many compounds which show weak or no molecular ions for heavy hydrocarbons. The use of GC-MS with supersonic molecular beams (Supersonic GC-MS) significantly extends the range of heavy hydrocarbons that can be analyzed, and provides trustworthy enhanced molecular ion to all hydrocarbons. In addition, unique isomer mass spectral features are obtained in the ionization of vibrationally cold hydrocarbons.
View Article and Find Full Text PDFGas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMBs) (also named Supersonic GC-MS) is based on GC and MS interface with SMBs and on the electron ionization (EI) of vibrationally cold analytes in the SMBs (cold EI) in a fly-through ion source. This ion source is inherently inert and further characterized by fast response and vacuum background filtration capability. The same ion source offers three modes of ionization including cold EI, classical EI and cluster chemical ionization (CI).
View Article and Find Full Text PDFSeveral novel synthetic organic compounds were successfully analyzed with a unique type of GC-MS titled Supersonic GC-MS following a failure in their analysis with standard GC-MS. Supersonic GC-MS is based on interfacing GC and MS with a supersonic molecular beam (SMB) and on electron ionization of sample compounds as vibrationally cold molecules while in the SMB, or by cluster chemical ionization. The analyses of novel synthetic organic compounds significantly benefited from the extended range of compounds amenable to analyses with the Supersonic GC-MS.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
August 2003
Upon the supersonic expansion of helium mixed with vapor from an organic solvent (e.g. methanol), various clusters of the solvent with the sample molecules can be formed.
View Article and Find Full Text PDFGas chromatography-mass spectrometry (GC-MS) suffers from a major limitation in that an expanding number of thermally labile or low volatility compounds of interest are not amenable for analysis. We found that the elution temperatures of compounds from GC can be significantly lowered by reducing the column length, increasing the carrier gas flow rate, reducing the capillary column film thickness and lowering the temperature programming rate. Pyrene is eluted at 287 degrees C in standard GC-MS with a 30 m x 0.
View Article and Find Full Text PDF