AZD9272 and AZD6538 are two novel mGluR5 negative allosteric modulators selected for further clinical development. An initial high-throughput screening revealed leads with promising profiles, which were further optimized by minor, yet indispensable, structural modifications to bring forth these drug candidates. Advantageously, both compounds may be synthesized in as little as one step.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2012
A series of potent antagonists of the ion channel transient receptor potential A1 (TRPA1) was developed by modifying lead structure 16 that was discovered by high-throughput screening. Based on lead compound 16, a SAR was established, showing a narrow region at the nitro-aromatic R(1) moiety and at the warhead, while the R(2) side had a much wider scope including ureas and carbamates. Compound 16 inhibits Ca(2+)-activated TRPA1 currents reversibly in whole cell patch clamp experiments, indicating that under in vivo conditions, it does not react covalently, despite its potentially electrophilic ketone.
View Article and Find Full Text PDFThe scope and limitation of the combined ruthenium-lipase induced dynamic kinetic resolution (DKR) through O-acetylation of racemic heteroaromatic secondary alcohols, i.e., 1-heteroaryl substituted ethanols, was investigated.
View Article and Find Full Text PDFStructure-activity relationship investigations of the thiopyrimidine (1), an HTS hit with micromolar activity as a metabotropic glutamate receptor 5 (mGluR5) antagonist, led to compounds with sub-micromolar activity.
View Article and Find Full Text PDF