Publications by authors named "Alexander Artyukhov"

Hydrogels from natural polysaccharides are of great interest for tissue engineering. This study aims (1) to prepare hydroxyapatite-loaded macroporous calcium alginate hydrogels by novel one-step technique using internal gelation in water-frozen solutions; (2) to evaluate their physicochemical properties; (3) to estimate their ability to support cell growth and proliferation in vitro. The structure of the hydrogel samples in a swollen state was studied by confocal laser scanning microscopy and was shown to represent a system of interconnected macropores with sizes of tens micron.

View Article and Find Full Text PDF

Application of nanocarriers for drug delivery brings numerous advantages, allowing both minimization of side effects common in systemic drug delivery and improvement in targeting, which has made it the focal point of nanoscience for a number of years. While most of the studies are focused on encapsulation of hydrophobic drugs, delivery of hydrophilic compounds is typically performed via covalent attachment, which often requires chemical modification of the drug and limits the release kinetics. In this paper, we report synthesis of biphilic copolymers of various compositions capable of self-assembly in water with the formation of nanoparticles and suitable for ionic binding of the common anticancer drug doxorubicin.

View Article and Find Full Text PDF

Co-delivery of chemotherapeutics in cancer treatment has been proven essential for overcoming multidrug resistance and improving the outcome of therapy. We report the synthesis of amphiphilic copolymers of -vinyl-2-pyrrolidone and allyl glycidyl ether of various compositions and demonstrate that they can form nanoaggregates capable of simultaneous covalent immobilization of doxorubicin by the epoxy groups in the shell and hydrophobic-driven incorporation of paclitaxel into the core of nanoparticles. The structure of the obtained copolymers was characterized by C NMR, IR, and MALDI spectroscopy, as well as adsorption at the water/toluene interface.

View Article and Find Full Text PDF

The aim of the study is to search for a reaction that provides the possibility of tandem "one-pot" formation of polymer networks during radical copolymerization of -vinyl-2-pyrrolidone and glycidyl methacrylate. It was shown that the addition of recently synthesized 1,3-dimethylimidazolium (phosphonooxy-)oligosulfanide makes it possible to obtain a cross-linked copolymer in one stage as a result of radical copolymerization of -vinyl-2-pyrrolidone and glycidyl methacrylate with a molar ratio of monomers less than 1.4.

View Article and Find Full Text PDF

The kinetic regularities of the initial stage of chemical oxidative polymerization of methylene blue under the action of ammonium peroxodisulfate in an aqueous medium have been established by the method of potentiometry. It was shown that the methylene blue polymerization mechanism includes the stages of chain initiation and growth. It was found that the rate of the initial stage of the reaction obeys the kinetic equation of the first order with the activation energy 49 kJ × mol.

View Article and Find Full Text PDF

Poly(vinyl alcohol) (PVA) hydrogels are widely employed for various biomedical applications, including tissue engineering, due to their biocompatibility, high water solubility, low protein adsorption, and chemical stability. However, non-charged surface of PVA-based hydrogels is not optimal for cell adhesion and spreading. Here, cross-linked macroporous hydrogels based on low molecular weight acrylated PVA (Acr-PVA) was synthesized by modification of the pendant alcohol groups on the PVA with glycidyl methacrylate (GMA).

View Article and Find Full Text PDF

Various biomolecules, for example proteins, peptides etc., entrapped in polymer matrices, impact interactions between matrix and cells, including stimulation of cell adhesion and proliferation. Delta-sleep inducing peptide (DSIP) possesses numerous beneficial properties, including its abilities in burn treatment and neuronal protection.

View Article and Find Full Text PDF

Amphiphilic poly-N-vinylpyrrolidone derivatives (Amph-PVP) with different molecular weight of hydrophilic PVP fragment and one terminal hydrophobic n-alkyl fragment of different length were synthesized for preparation of nano-scaled particles in aqueous media. To estimate novel polymer efficiency and perspective as basis for drug delivery systems, the polymeric micelle-like particles were prepared by dialysis and solvent evaporation methods. Indomethacin was incorporated into hydrophobic inner core of these nanoparticles as a typical model drug.

View Article and Find Full Text PDF