Publications by authors named "Alexander Andreyev"

In Alzheimer's disease (AD), dysfunctional mitochondrial metabolism is associated with synaptic loss, the major pathological correlate of cognitive decline. Mechanistic insight for this relationship, however, is still lacking. Here, comparing isogenic wild-type and AD mutant human induced pluripotent stem cell (hiPSC)-derived cerebrocortical neurons (hiN), evidence is found for compromised mitochondrial energy in AD using the Seahorse platform to analyze glycolysis and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

A causal relationship between mitochondrial metabolic dysfunction and neurodegeneration has been implicated in synucleinopathies, including Parkinson disease (PD) and Lewy body dementia (LBD), but underlying mechanisms are not fully understood. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons with mutation in the gene encoding α-synuclein (αSyn), we report the presence of aberrantly S-nitrosylated proteins, including tricarboxylic acid (TCA) cycle enzymes, resulting in activity inhibition assessed by carbon-labeled metabolic flux experiments. This inhibition principally affects α-ketoglutarate dehydrogenase/succinyl coenzyme-A synthetase, metabolizing α-ketoglutarate to succinate.

View Article and Find Full Text PDF

Lysosomal storage diseases result in various developmental and physiological complications, including cachexia. To study the causes for the negative energy balance associated with cachexia, we assessed the impact of sulfamidase deficiency and heparan sulfate storage on energy homeostasis and metabolism in a mouse model of type IIIa mucopolysaccharidosis (MPS IIIa, Sanfilippo A syndrome). At 12-weeks of age, MPS IIIa mice exhibited fasting and postprandial hypertriglyceridemia compared with wildtype mice, with a reduction of white and brown adipose tissues.

View Article and Find Full Text PDF

Macrophage proinflammatory activation is an important etiologic component of the development of insulin resistance and metabolic dysfunction in obesity. However, the underlying mechanisms are not clearly understood. Here, we demonstrate that a mitochondrial inner membrane protein, adenine nucleotide translocase 2 (ANT2), mediates proinflammatory activation of adipose tissue macrophages (ATMs) in obesity.

View Article and Find Full Text PDF

How natural or innate-like lymphocytes generate the capacity to produce IL-4 and other cytokines characteristic of type 2 immunity remains unknown. Invariant natural killer T (iNKT) cells differentiate in the thymus into NKT1, NKT2, and NKT17 subsets, similar to mature, peripheral CD4 T helper cells. The mechanism for this differentiation was not fully understood.

View Article and Find Full Text PDF

Inflammatory bowel disease is characterized by an exacerbated intestinal immune response, but the critical mechanisms regulating immune activation remain incompletely understood. We previously reported that the TNF-superfamily molecule TNFSF14 (LIGHT) is required for preventing severe disease in mouse models of colitis. In addition, deletion of lymphotoxin beta receptor (LTβR), which binds LIGHT, also led to aggravated colitis pathogenesis.

View Article and Find Full Text PDF

CCR6CXCR3CCR4CD4 memory T cells, termed Th1*, are important for long-term immunity to and the pathogenesis of autoimmune diseases. Th1* cells express a unique set of lineage-specific transcription factors characteristic of both Th1 and Th17 cells and display distinct gene expression profiles compared with other CD4 T cell subsets. To examine molecules and signaling pathways important for the effector function of Th1* cells, we performed loss-of-function screening of genes selectively enriched in the Th1* subset.

View Article and Find Full Text PDF

Decreased adipose tissue oxygen tension and increased HIF-1α expression can trigger adipose tissue inflammation and dysfunction in obesity. Our current understanding of obesity-associated decreased adipose tissue oxygen tension is mainly focused on changes in oxygen supply and angiogenesis. Here, we demonstrate that increased adipocyte O demand, mediated by ANT2 activity, is the dominant cause of adipocyte hypoxia.

View Article and Find Full Text PDF

Long-chain fatty acid (LCFA) oxidation has been shown to play an important role in interleukin-4 (IL-4)-mediated macrophage polarization (M(IL-4)). However, many of these conclusions are based on the inhibition of carnitine palmitoyltransferase-1 with high concentrations of etomoxir that far exceed what is required to inhibit enzyme activity (EC < 3 μM). We employ genetic and pharmacologic models to demonstrate that LCFA oxidation is largely dispensable for IL-4-driven polarization.

View Article and Find Full Text PDF

At abnormally elevated levels of intracellular Ca, mitochondrial Ca uptake may compromise mitochondrial electron transport activities and trigger membrane permeability changes that allow for release of cytochrome c and other mitochondrial apoptotic proteins into the cytosol. In this study, a clinically relevant canine cardiac arrest model was used to assess the effects of global cerebral ischemia and reperfusion on mitochondrial Ca uptake capacity, Ca uptake-mediated inhibition of respiration, and Ca-induced cytochrome c release, as measured in vitro in a K-based medium in the presence of Mg, ATP, and NADH-linked oxidizable substrates. Maximum Ca uptake by frontal cortex mitochondria was significantly lower following 10 min cardiac arrest compared to non-ischemic controls.

View Article and Find Full Text PDF

Activities of enzymes localized to the mitochondrial matrix of mammalian cells are often critical regulatory steps in cellular metabolism. As such, measurement of matrix enzyme activities in response to genetic modifications or drug interventions is often desired. However, measurements in intact cells are often hampered by the presence of other isozymes in the cytoplasm as well as the inability to deliver enzyme substrates across cellular membranes.

View Article and Find Full Text PDF

Glutamate is the dominant excitatory neurotransmitter in the brain, but under conditions of metabolic stress it can accumulate to excitotoxic levels. Although pharmacologic modulation of excitatory amino acid receptors is well studied, minimal consideration has been given to targeting mitochondrial glutamate metabolism to control neurotransmitter levels. Here we demonstrate that chemical inhibition of the mitochondrial pyruvate carrier (MPC) protects primary cortical neurons from excitotoxic death.

View Article and Find Full Text PDF

Polyunsaturated fatty acid (PUFA) peroxidation is initiated by hydrogen atom abstraction at bis-allylic sites and sets in motion a chain reaction that generates multiple toxic products associated with numerous disorders. Replacement of bis-allylic hydrogens of PUFAs with deuterium atoms (D-PUFAs), termed site-specific isotope reinforcement, inhibits PUFA peroxidation and confers cell protection against oxidative stress. We demonstrate that structurally diverse deuterated PUFAs similarly protect against oxidative stress-induced injury in both yeast and mammalian (myoblast H9C2) cells.

View Article and Find Full Text PDF

Mitochondrial reactive oxygen species (ROS) metabolism is unique in that mitochondria both generate and scavenge ROS. Recent estimates of ROS scavenging capacity of brain mitochondria are surprisingly high, ca. 9-12 nmol H2O2/min/mg, which is ~100 times higher than the rate of ROS generation.

View Article and Find Full Text PDF

Miner1 is a redox-active 2Fe2S cluster protein. Mutations in Miner1 result in Wolfram Syndrome, a metabolic disease associated with diabetes, blindness, deafness, and a shortened lifespan. Embryonic fibroblasts from Miner1(-/-) mice displayed ER stress and showed hallmarks of the unfolded protein response.

View Article and Find Full Text PDF

Facilitated pyruvate transport across the mitochondrial inner membrane is a critical step in carbohydrate, amino acid, and lipid metabolism. We report that clinically relevant concentrations of thiazolidinediones (TZDs), a widely used class of insulin sensitizers, acutely and specifically inhibit mitochondrial pyruvate carrier (MPC) activity in a variety of cell types. Respiratory inhibition was overcome with methyl pyruvate, localizing the effect to facilitated pyruvate transport, and knockdown of either paralog, MPC1 or MPC2, decreased the EC50 for respiratory inhibition by TZDs.

View Article and Find Full Text PDF

Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP) is essential for "intrinsic" apoptotic cell death. Published studies used synthetic liposomes to reveal an intrinsic pore-forming activity of Bax, but it is unclear how other mitochondrial outer membrane (MOM) proteins might facilitate this function. We carefully analyzed the kinetics of Bax-mediated pore formation in isolated MOMs, with some unexpected results.

View Article and Find Full Text PDF

Eicosanoids constitute a diverse class of bioactive lipid mediators that are produced from arachidonic acid and play critical roles in cell signaling and inflammatory aspects of numerous diseases. We have previously quantified eicosanoid metabolite production in RAW264.7 macrophage cells in response to Toll-like receptor 4 signaling and analyzed the levels of transcripts coding for the enzymes involved in the eicosanoid metabolite biosynthetic pathways.

View Article and Find Full Text PDF

Lipids orchestrate biological processes by acting remotely as signaling molecules or locally as membrane components that modulate protein function. Detailed insight into lipid function requires knowledge of the subcellular localization of individual lipids. We report an analysis of the subcellular lipidome of the mammalian macrophage, a cell type that plays key roles in inflammation, immune responses, and phagocytosis.

View Article and Find Full Text PDF

Compartmentalization of biological processes and the associated cellular components is crucial for cell function. Typically, the location of a component is revealed through a co-localization and/or co-purification with an organelle marker. Therefore, the identification of reliable markers is critical for a thorough understanding of cellular function and dysfunction.

View Article and Find Full Text PDF

Eicosanoids, including the prostaglandins, leukotrienes, hydroxyeicosatetraenoic acids, epoxyeicosatetraenoic acids, and related compounds, are biosynthetic, bioactive mediators derived from arachidonic acid (AA), a 20:4(n-6) fatty acid. We have developed a comprehensive and sensitive mass spectral analysis to survey eicosanoid release from endotoxin-stimulated RAW 264.7 macrophage-like cells that is capable of detecting over 70 diverse eicosanoids and eicosanoid metabolites, should they be present.

View Article and Find Full Text PDF

Cyclic AMP response element-binding protein (CREB) is a widely expressed transcription factor whose role in neuronal protection is now well established. Here we report that CREB is present in the mitochondrial matrix of neurons and that it binds directly to cyclic AMP response elements (CREs) found within the mitochondrial genome. Disruption of CREB activity in the mitochondria decreases the expression of a subset of mitochondrial genes, including the ND5 subunit of complex I, down-regulates complex I-dependent mitochondrial respiration, and increases susceptibility to 3-nitropropionic acid, a mitochondrial toxin that induces a clinical and pathological phenotype similar to Huntington disease.

View Article and Find Full Text PDF

Neuronal death in response to excitotoxic levels of glutamate is dependent upon mitochondrial Ca2+ accumulation and is associated with a drop in ATP levels and a loss in ionic homeostasis. Yet the mapping of temporal events in mitochondria subsequent to Ca2+ sequestration is incomplete. By isolating mitochondria from primary cultures, we discovered that glutamate treatment of cortical neurons for 10 min caused 44% inhibition of ADP-stimulated respiration, whereas the maximal rate of electron transport (uncoupler-stimulated respiration) was inhibited by approximately 10%.

View Article and Find Full Text PDF

We report the inducible, stable expression of a dominant negative form of mitochondria-specific DNA polymerase-gamma to eliminate mitochondrial DNA (mtDNA) from human cells in culture. HEK293 cells were transfected with a plasmid encoding inactive DNA polymerase-gamma harboring a D1135A substitution (POLGdn). The cells rapidly lost mtDNA (t1/2 = 2-3 days) when expression of the transgene was induced.

View Article and Find Full Text PDF

Several lines of evidence indicate that mitochondrial reactive oxygen species (ROS) generation is the major source of oxidative stress in the cell. It has been shown that ROS production accompanies cytochrome c release in different apoptotic paradigms, but the site(s) of ROS production remain obscure. In the current study, we demonstrate that loss of cytochrome c by mitochondria oxidizing NAD(+)-linked substrates results in a dramatic increase of ROS production and respiratory inhibition.

View Article and Find Full Text PDF