Publications by authors named "Alexander Agoulnik"

The peptide hormone relaxin plays a critical role in tissue remodeling in a variety of tissues through activation of its cognate receptor, RXFP1. Relaxin's ability to modify extracellular matrices has provided a strong rationale for treating fibrosis in a variety of tissues. Treatment with recombinant relaxin peptides in clinical studies of heart failure has not yet proven useful, likely due to the short half-life of infused peptide.

View Article and Find Full Text PDF
Article Synopsis
  • The Concise Guide to PHARMACOLOGY 2023/24 offers a summarized overview of approximately 1800 drug targets and around 6000 interactions with 3900 ligands, mostly in a tabular format.
  • It focuses on selective pharmacology and includes links to an open access knowledgebase for more detailed drug information.
  • The guide divides drug targets into six major categories, providing essential summaries and guidance based on the latest pharmacological data available as of mid-2023, while serving as an official resource by the International Union of Basic and Clinical Pharmacology.
View Article and Find Full Text PDF

The relaxin/insulin-like family peptide receptor 2 (RXFP2) belongs to the family of class A G-protein coupled receptors (GPCRs) and it is the only known target for the insulin-like factor 3 peptide (INSL3). The importance of this ligand-receptor pair in the development of the gubernacular ligament during the transabdominal phase of testicular descent is well established. More recently, RXFP2 has been implicated in maintaining healthy bone formation.

View Article and Find Full Text PDF

Phosphoinositides (PIs) are relatively rare lipid components of the cellular membranes. Their homeostasis is tightly controlled by specific PI kinases and PI phosphatases. PIs play essential roles in cellular signaling, cytoskeletal organization, and secretory processes in various diseases and normal physiology.

View Article and Find Full Text PDF

Diseases, such as diabetes and hypertension, often lead to chronic kidney failure. The peptide hormone relaxin has been shown to have therapeutic effects in various organs. In the present study, we tested the hypothesis that ML290, a small molecule agonist of the human relaxin receptor (RXFP1), is able to target the kidney to remodel the extracellular matrix and reduce apoptosis induced by unilateral ureteral obstruction (UUO).

View Article and Find Full Text PDF

A high fat diet and obesity have been linked to the development of metabolic dysfunction and the promotion of multiple cancers. The causative cellular signals are multifactorial and not yet completely understood. In this report, we show that Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) signaling protects mice from diet-induced metabolic dysfunction.

View Article and Find Full Text PDF

Insulin-like 3 peptide (INSL3) is a member of the insulin-like peptide superfamily and is the only known physiological ligand of relaxin family peptide receptor 2 (RXFP2), a G protein-coupled receptor (GPCR). In mammals, INSL3 is primarily produced both in testicular Leydig cells and in ovarian theca cells, but circulating levels of the hormone are much higher in males than in females. The INSL3/RXFP2 system has an essential role in the development of the gubernaculum for the initial transabdominal descent of the testis and in maintaining proper reproductive health in men.

View Article and Find Full Text PDF

Urogenital tract abnormalities are among the most common congenital defects in humans. Male urogenital development requires Hedgehog-GLI signaling and testicular hormones, but how these pathways interact is unclear. We found that Gli3XtJ mutant mice exhibit cryptorchidism and hypospadias due to local effects of GLI3 loss and systemic effects of testicular hormone deficiency.

View Article and Find Full Text PDF

Inositol polyphosphate-4-phosphatase type II (INPP4B) is a dual-specificity phosphatase that acts as a tumor suppressor in multiple cancers. INPP4B dephosphorylates phospholipids at the 4th position of the inositol ring and inhibits AKT and PKC signaling by hydrolyzing of PI(3,4)P2 and PI(4,5)P2, respectively. INPP4B protein phosphatase targets include phospho-tyrosines on Akt and phospho-serine and phospho-threonine on PTEN.

View Article and Find Full Text PDF

Fibrosis is an underlying cause of cirrhosis and hepatic failure resulting in end stage liver disease with limited pharmacological options. The beneficial effects of relaxin peptide treatment were demonstrated in clinically relevant animal models of liver fibrosis. However, the use of relaxin is problematic because of a short half-life.

View Article and Find Full Text PDF

Bone and skeletal muscle are currently considered a unified functional unit, showing complementary regulation at mechanical, biochemical, paracrine and metabolic levels. This functional unit undergoes a central hormonal regulation which is mainly ascribed to sex steroids and, in particular, androgens. However, recent evidence suggest that another testicular hormone lines the classical anabolic effect of testosterone on bone and muscle, the insulin-like peptide 3 (INSL3) acting on its specific receptor RXFP2.

View Article and Find Full Text PDF

The peptide hormone relaxin has beneficial roles in several organs through its action on its cognate G protein-coupled receptor, RXFP1. Relaxin administration is limited to intravenous, subcutaneous, intramuscular, or spinal injection. Another drawback of peptide-based therapy is the short half-life, which requires continuous delivery of the drug to achieve efficient concentration in target organs.

View Article and Find Full Text PDF

Androgens are primarily involved in muscle growth, whilst disease-driven muscle wasting is frequently associated with hypogonadism. The Leydig cells of the testes also produce the peptide-hormone Insulin-like peptide 3 (INSL3). INSL3 displays anabolic activity on bone, a target tissue of androgens, and its plasma concentrations are diminished in male hypogonadism.

View Article and Find Full Text PDF

A dose responsive quantitative high throughput screen (qHTS) of >350,000 compounds against a human relaxin/insulin-like family peptide receptor (RXFP1) transfected HEK293 cell line identified 2-acetamido-N-phenylbenzamides 1 and 3 with modest agonist activity. An extensive structure-activity study has been undertaken to optimize the potency, efficacy, and physical properties of the series, resulting in the identification of compound 65 (ML-290), which has excellent in vivo PK properties with high levels of systemic exposure. This series, exemplified by 65, has produced first-in-class small-molecule agonists of RXFP1 and is a potent activator of anti-fibrotic genes.

View Article and Find Full Text PDF

The pathophysiology of arteriovenous fistula (AVF) maturation failure is not completely understood but impaired outward remodeling (OR) and intimal hyperplasia are thought to be contributors. This adverse vascular response after AVF surgery results from interplay between vascular smooth muscle cells (VSMCs), the extracellular matrix (ECM), and inflammatory cells. Relaxin (RLN) is a hormone that acts on the vasculature via interaction with RLN/insulin-like peptide family receptor 1 (RXFP1), resulting in vasodilatation, ECM remodeling, and decreased inflammation.

View Article and Find Full Text PDF

Relaxin, a small peptide hormone of the insulin/relaxin family, demonstrated antifibrotic, organ protective, vasodilatory, and proangiogenic properties in clinical trials and several animal models of human diseases. Relaxin family peptide receptor 1 (RXFP1) is the relaxin cognate G protein-coupled receptor. We have identified a series of small molecule agonists of human RXFP1.

View Article and Find Full Text PDF

Activation of the relaxin receptor RXFP1 has been associated with improved survival in acute heart failure. ML290 is a small molecule RXFP1 agonist with simple structure, long half-life and high stability. Here we demonstrate that ML290 is a biased agonist in human cells expressing RXFP1 with long-term beneficial actions on markers of fibrosis in human cardiac fibroblasts (HCFs).

View Article and Find Full Text PDF

Unlabelled: The relaxin family of peptide hormones and their cognate GPCRs are becoming physiologically well-characterized in the cardiovascular system and particularly in female reproductive processes. Much less is known about the physiology and pharmacology of these peptides in male reproduction, particularly as regards humans. H2-relaxin is involved in prostate function and growth, while insulin-like peptide 3 (INSL3) is a major product of the testicular Leydig cells and, in the adult, appears to modulate steroidogenesis and germ cell survival.

View Article and Find Full Text PDF

Unlabelled: Relaxin is a small heterodimeric peptide hormone of the insulin/relaxin superfamily produced mainly in female and male reproductive organs. It has potent antifibrotic, vasodilatory and angiogenic effects and regulates the normal function of various physiological systems. Preclinical studies and recent clinical trials have shown the promise of recombinant relaxin as a therapeutic agent in the treatment of cardiovascular and fibrotic diseases.

View Article and Find Full Text PDF

Purpose: Castration therapy in advanced prostate cancer eventually fails and leads to the development of castration-resistant prostate cancer (CRPC), which has no cure. Characteristic features of CRPC can be increased androgen receptor (AR) expression and altered transcriptional output. We investigated the expression of nuclear receptor corepressor 1 (NCOR1) in human prostate and prostate cancer and the role of NCOR1 in response to antiandrogens.

View Article and Find Full Text PDF

The GPCR relaxin family peptide receptor 1 (RXFP1) mediates the action of relaxin peptide hormone, including its tissue remodeling and antifibrotic effects. The peptide has a short half-life in plasma, limiting its therapeutic utility. However, small-molecule agonists of human RXFP1 can overcome this limitation and may provide a useful therapeutic approach, especially for chronic diseases such as heart failure and fibrosis.

View Article and Find Full Text PDF

The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy and Amhr2-cre transgene to generate mice with conditionally activated Notch1 (Rosa(Notch1)). The Amhr2-cre transgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary.

View Article and Find Full Text PDF

Relaxin peptide (RLN), which signals through the relaxin family peptide 1 (RXFP1) GPCR receptor, has shown therapeutic effects in an acute heart failure clinical trial. We have identified a small-molecule agonist of human RXFP1, ML290; however, it does not activate the mouse receptor. To find a suitable animal model for ML290 testing and to gain mechanistic insights into the interaction of various ligands with RXFP1, we have cloned rhesus macaque, pig, rabbit, and guinea pig RXFP1s and analyzed their activation by RLN and ML290.

View Article and Find Full Text PDF

Relaxin hormone secreted into the circulation during pregnancy was discovered through its effects on pubic symphysis relaxation and parturition. Genetic inactivation of the relaxin gene or its cognate relaxin family peptide receptor 1 (RXFP1) in mice caused failure of parturition and mammary nipple enlargement, as well as increased collagen fiber density in the cervix and vagina. However, the relaxin effect on discrete cells and tissues has yet to be determined.

View Article and Find Full Text PDF