Publications by authors named "Alexander A Shestov"

Background: Inhibition of kinases is the ever-expanding therapeutic approach to various types of cancer. Typically, assessment of the treatment response is accomplished by standard, volumetric imaging procedures, performed weeks to months after the onset of treatment, given the predominantly cytostatic nature of the kinase inhibitors, at least when used as single agents. Therefore, there is a great clinical need to develop new monitoring approaches to detect the response to kinase inhibition much more promptly.

View Article and Find Full Text PDF

Activated T cells undergo a metabolic shift to aerobic glycolysis to support the energetic demands of proliferation, differentiation, and cytolytic function. Transmembrane glucose flux is facilitated by glucose transporters (GLUT) that play a vital role in T cell metabolic reprogramming and anti-tumour function. GLUT isoforms are regulated at the level of expression and subcellular distribution.

View Article and Find Full Text PDF

Lymphodepletion (LD) is an integral component of chimeric antigen receptor T-cell (CART) immunotherapies. In this study, we compared the safety and efficacy of bendamustine (Benda) to standard fludarabine/cyclophosphamide (Flu/Cy) LD before CD19-directed, CD28-costimulated CART axicabtagene ciloleucel (axi-cel) for patients with large B-cell lymphoma (LBCL) and follicular lymphoma (FL). We analyzed 59 patients diagnosed with LBCL (n = 48) and FL (n = 11) consecutively treated with axi-cel at the University of Pennsylvania.

View Article and Find Full Text PDF

The Nobel Prize Winner (1931) Dr. Otto H. Warburg had established that the primary energy source of the cancer cell is aerobic glycolysis (the Warburg effect).

View Article and Find Full Text PDF

Bonded cumomers are sets of isotopomers of C-labeled metabolites containing a particular sequence of contiguously or singly labeled carbon atoms. Only these isotopomers contribute to multiplet structure in the C NMR spectrum. We discuss the application of this technique to the study of quantitative tumor metabolism, bioenergetics, and the Warburg effect.

View Article and Find Full Text PDF

Current methods to evaluate effects of kinase inhibitors in cancer are suboptimal. Analysis of changes in cancer metabolism in response to the inhibitors creates an opportunity for better understanding of the interplay between cell signaling and metabolism and, from the translational perspective, potential early evaluation of response to the inhibitors as well as treatment optimization. We performed genomic, metabolomic, and fluxomic analyses to evaluate the mechanism of action of the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib (IBR) in mantle cell lymphoma (MCL) cells.

View Article and Find Full Text PDF

Carbon-13 NMR spectroscopy ( C MRS) offers the unique capability to measure brain metabolic rates in vivo. Hyperpolarized C reduces the time required to assess brain metabolism from hours to minutes when compared with conventional C MRS. This study investigates metabolism of hyperpolarized [1- C]pyruvate and [2- C]pyruvate in the rat brain in vivo under various anesthetics: pentobarbital, isoflurane, α-chloralose, and morphine.

View Article and Find Full Text PDF

Targeted cancer therapies that use genetics are successful, but principles for selectively targeting tumor metabolism that is also dependent on the environment remain unknown. We now show that differences in rate-controlling enzymes during the Warburg effect (WE), the most prominent hallmark of cancer cell metabolism, can be used to predict a response to targeting glucose metabolism. We establish a natural product, koningic acid (KA), to be a selective inhibitor of GAPDH, an enzyme we characterize to have differential control properties over metabolism during the WE.

View Article and Find Full Text PDF

Lonidamine (LND) was initially introduced as an antispermatogenic agent. It was later found to have anticancer activity sensitizing tumors to chemo-, radio-, and photodynamic-therapy and hyperthermia. Although the mechanism of action remained unclear, LND treatment has been known to target metabolic pathways in cancer cells.

View Article and Find Full Text PDF

The Warburg effect, or aerobic glycolysis, is marked by the increased metabolism of glucose to lactate in the presence of oxygen. Despite its widespread prevalence in physiology and cancer biology, the causes and consequences remain incompletely understood. Here, we show that a simple balance of interacting fluxes in glycolysis creates constraints that impose the necessary conditions for glycolytic flux to generate lactate as opposed to entering into the mitochondria.

View Article and Find Full Text PDF

We present the first validated metabolic network model for analysis of flux through key pathways of tumor intermediary metabolism, including glycolysis, the oxidative and non-oxidative arms of the pentose pyrophosphate shunt, the TCA cycle as well as its anaplerotic pathways, pyruvate-malate shuttling, glutaminolysis, and fatty acid biosynthesis and oxidation. The model that is called Bonded Cumomer Analysis for application to (13)C magnetic resonance spectroscopy ((13)C MRS) data and Fragmented Cumomer Analysis for mass spectrometric data is a refined and efficient form of isotopomer analysis that can readily be expanded to incorporate glycogen, phospholipid, and other pathways thereby encompassing all the key pathways of tumor intermediary metabolism. Validation was achieved by demonstrating agreement of experimental measurements of the metabolic rates of oxygen consumption, glucose consumption, lactate production, and glutamate pool size with independent measurements of these parameters in cultured human DB-1 melanoma cells.

View Article and Find Full Text PDF

Cells receive growth and survival stimuli through their attachment to an extracellular matrix (ECM). Overcoming the addiction to ECM-induced signals is required for anchorage-independent growth, a property of most malignant cells. Detachment from ECM is associated with enhanced production of reactive oxygen species (ROS) owing to altered glucose metabolism.

View Article and Find Full Text PDF

A network model for the determination of tumor metabolic fluxes from (13)C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-(13)C2]glucose under normoxic conditions at 37 °C and monitored by (13)C NMR spectroscopy.

View Article and Find Full Text PDF

Most current brain metabolic models are not capable of taking into account the dynamic isotopomer information available from fine structure multiplets in (13)C spectra, due to the difficulty of implementing such models. Here we present a new approach that allows automatic implementation of multi-compartment metabolic models capable of fitting any number of (13)C isotopomer curves in the brain. The new automated approach also makes it possible to quickly modify and test new models to best describe the experimental data.

View Article and Find Full Text PDF

The antitumor agent lonidamine (LND; 1-(2,4-dichlorobenzyl)-1H-indazole-3-carboxylic acid) is known to interfere with energy-yielding processes in cancer cells. However, the effect of LND on central energy metabolism has never been fully characterized. In this study, we report that a significant amount of succinate is accumulated in LND-treated cells.

View Article and Find Full Text PDF

Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR) to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of (13)C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA) cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS) in response to different extracellular environments.

View Article and Find Full Text PDF

The serine, glycine, one-carbon (SGOC) metabolic network is implicated in cancer pathogenesis, but its general functions are unknown. We carried out a computational reconstruction of the SGOC network and then characterized its expression across thousands of cancer tissues. Pathways including methylation and redox metabolism exhibited heterogeneous expression indicating a strong context dependency of their usage in tumors.

View Article and Find Full Text PDF

Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity of metabolism are necessary and sufficient for this phenotype. We developed a computational model of glycolysis and an integrated analysis using metabolic control analysis (MCA), metabolomics data, and statistical simulations.

View Article and Find Full Text PDF

There has been a surge of interest in understanding the regulation of metabolic networks involved in disease in recent years. Quantitative models are increasingly being used to interrogate the metabolic pathways that are contained within this complex disease biology. At the core of this effort is the mathematical modeling of central carbon metabolism involving glycolysis and the citric acid cycle (referred to as energy metabolism).

View Article and Find Full Text PDF

Approximately half of all cancer patients present with cachexia, a condition in which disease-associated metabolic changes lead to a severe loss of skeletal muscle mass. Working toward an integrated and mechanistic view of cancer cachexia, we investigated the hypothesis that cancer promotes mitochondrial uncoupling in skeletal muscle. We subjected mice to in vivo phosphorous-31 nuclear magnetic resonance (31P NMR) spectroscopy and subjected murine skeletal muscle samples to gas chromatography/mass spectrometry (GC/MS).

View Article and Find Full Text PDF

Two variants of a widely used two-compartment model were prepared for fitting the time course of [1,6-(13)C2]glucose metabolism in rat brain. Features common to most models were included, but in one model the enrichment of the substrates entering the glia and neuronal citric acid cycles was allowed to differ. Furthermore, the models included the capacity to analyze multiplets arising from (13)C spin-spin coupling, known to improve parameter estimates in heart.

View Article and Find Full Text PDF

Metabolic modeling of dynamic (13)C labeling curves during infusion of (13)C-labeled substrates allows quantitative measurements of metabolic rates in vivo. However metabolic modeling studies performed in the brain to date have only modeled time courses of total isotopic enrichment at individual carbon positions (positional enrichments), not taking advantage of the additional dynamic (13)C isotopomer information available from fine-structure multiplets in (13)C spectra. Here we introduce a new (13)C metabolic modeling approach using the concept of bonded cumulative isotopomers, or bonded cumomers.

View Article and Find Full Text PDF

Glucose is the primary fuel for brain function, and determining the kinetics of cerebral glucose transport and utilization is critical for quantifying cerebral energy metabolism. The kinetic parameters of cerebral glucose transport, K(M)(t) and V(max)(t), in humans have so far been obtained by measuring steady-state brain glucose levels by proton ((1)H) NMR as a function of plasma glucose levels and fitting steady-state models to these data. Extraction of the kinetic parameters for cerebral glucose transport necessitated assuming a constant cerebral metabolic rate of glucose (CMR(glc)) obtained from other tracer studies, such as (13)C NMR.

View Article and Find Full Text PDF

Objective: To investigate the effect of acute insulin-induced hypoglycemia on cerebral glucose metabolism in healthy humans, measured by (13)C magnetic resonance spectroscopy (MRS).

Research Design And Methods: Hyperinsulinemic glucose clamps were performed at plasma glucose levels of 5 mmol/L (euglycemia) or 3 mmol/L (hypoglycemia) in random order in eight healthy subjects (four women) on two occasions, separated by at least 3 weeks. Enriched [1-(13)C]glucose 20% w/w was used for the clamps to maintain stable plasma glucose labeling.

View Article and Find Full Text PDF