Plants accumulate reserves in the daytime to support growth at night. Circadian regulation of diel reserve turnover was investigated by profiling starch, sugars, glucose 6-phosphate, organic acids, and amino acids during a light-dark cycle and after transfer to continuous light in Arabidopsis wild types and in mutants lacking dawn (lhy cca1), morning (prr7 prr9), dusk (toc1, gi), or evening (elf3) clock components. The metabolite time series were integrated with published time series for circadian clock transcripts to identify circadian outputs that regulate central metabolism.
View Article and Find Full Text PDFPlants use the circadian clock to sense photoperiod length. Seasonal responses like flowering are triggered at a critical photoperiod when a light-sensitive clock output coincides with light or darkness. However, many metabolic processes, like starch turnover, and growth respond progressively to photoperiod duration.
View Article and Find Full Text PDFIn short photoperiods, plants accumulate starch more rapidly in the light and degrade it more slowly at night, ensuring that their starch reserves last until dawn. To investigate the accompanying changes in the timing of growth, Arabidopsis was grown in a range of photoperiods and analyzed for rosette biomass, photosynthesis, respiration, ribosome abundance, polysome loading, starch, and over 40 metabolites at dawn and dusk. The data set was used to model growth rates in the daytime and night, and to identify metabolites that correlate with growth.
View Article and Find Full Text PDF