Publications by authors named "Alexander A Ishchenko"

Merocyanines, owing to their readily tunable electronic structure, are arguably the most versatile functional dyes, with ample opportunities for tailored design via variations of both the donor/acceptor (D/A) end groups and π-conjugated polymethine chain. A plethora of spectral properties, such as strong solvatochromism, high polarizability and hyperpolarizabilities, and sensitizing capacity, motivates extensive studies for their applications in light-converting materials for optoelectronics, nonlinear optics, optical storage, fluorescent probes, etc. Evidently, an understanding of the intrinsic structure-property relationships is a prerequisite for the successful design of functional dyes.

View Article and Find Full Text PDF

Human thymine-DNA glycosylase (TDG) excises T mispaired with G in a CpG context to initiate the base excision repair (BER) pathway. TDG is also involved in epigenetic regulation of gene expression by participating in active DNA demethylation. Here we demonstrate that under extended incubation time the full-length TDG (TDGFL), but neither its isolated catalytic domain (TDGcat) nor methyl-CpG binding domain-containing protein 4 (MBD4) DNA glycosylase, exhibits significant excision activity towards T and C in regular non-damaged DNA duplex in TpG/CpA and CpG/CpG contexts.

View Article and Find Full Text PDF

Hyperthermophilic archaea such as survive under very aggressive environmental conditions by occupying niches inaccessible to representatives of other domains of life. The ability to survive such severe living conditions must be ensured by extraordinarily efficient mechanisms of DNA processing, including repair. Therefore, in this study, we compared kinetics of conformational changes of DNA Endonuclease Q from during its interaction with various DNA substrates containing an analog of an apurinic/apyrimidinic site (F-site), hypoxanthine, uracil, 5,6-dihydrouracil, the α-anomer of adenosine, or 1,-ethenoadenosine.

View Article and Find Full Text PDF

A spectrophotometric method for the quantitative determination of nitrite was developed, based on the radical nitration of indopolycarbocyanine dyes in the presence of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO). The rate of the reaction of the studied dyes with nitrite increases with the lengthening of the polymethine chain and the presence of hydrophilic sulfo groups in the side chain of the dye. TEMPO acts as a co-reagent, significantly accelerating the reaction rate and increasing the sensitivity of nitrite determination.

View Article and Find Full Text PDF

Merocyanines, thanks to their easily adjustable electronic structure, appear to be the most versatile and promising functional dyes. Their D-π-A framework offers ample opportunities for custom design through variations in both donor/acceptor end-groups and the π-conjugated polymethine chain, and leads to a broad range of practical properties, including noticeable solvatochromism, high polarizability/hyperpolarizabilities, and the ability to sensitize various physicochemical processes. Accordingly, merocyanines are applied and extensively studied in various fields, such as light-converting materials for optoelectronics, nonlinear optics, optical storage, solar cells, fluorescent probes, and antitumor agents in photodynamic therapy.

View Article and Find Full Text PDF

Coordination of enzymatic activities in the course of base excision repair (BER) is essential to ensure complete repair of damaged bases. Two major mechanisms underlying the coordination of BER are known today: the "passing the baton" model and a model of preassembled stable multiprotein repair complexes called "repairosomes." In this work, we aimed to elucidate the coordination between human apurinic/apyrimidinic (AP) endonuclease APE1 and DNA polymerase Polβ in BER through studying an impact of APE1 on Polβ-catalyzed nucleotide incorporation into different model substrates that mimic different single-strand break (SSB) intermediates arising along the BER pathway.

View Article and Find Full Text PDF

The effect of localized surface plasmon resonance (LSPR) of a system consisting of a highly dipolar merocyanine dye and a silver nanoparticle (NP) was studied experimentally and theoretically. A theoretical model for estimating the fluorescence quantum yield () using quantum chemical calculations of intramolecular and intermolecular electronic transition rate constants was developed. Calculations show that the main deactivation channels of the lowest excited singlet state of the studied merocyanines are internal conversion ((S → S)) and fluorescence ((S → S)).

View Article and Find Full Text PDF

Human Fe(II)/α-ketoglutarate-dependent dioxygenase ABH2 plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases, e.g., N-methyladenine (mA), N-methylcytosine (mC), and some etheno derivatives.

View Article and Find Full Text PDF

Base excision repair (BER) is one of the important systems for the maintenance of genome stability via repair of DNA lesions. BER is a multistep process involving a number of enzymes, including damage-specific DNA glycosylases, apurinic/apyrimidinic (AP) endonuclease 1, DNA polymerase β, and DNA ligase. Coordination of BER is implemented by multiple protein-protein interactions between BER participants.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) sites are abundant DNA lesions arising from spontaneous hydrolysis of the N-glycosidic bond and as base excision repair (BER) intermediates. AP sites and their derivatives readily trap DNA-bound proteins, resulting in DNA-protein cross-links. Those are subject to proteolysis but the fate of the resulting AP-peptide cross-links (APPXLs) is unclear.

View Article and Find Full Text PDF

Cells are inevitably challenged by low-level/endogenous stresses that do not arrest DNA replication. Here, in human primary cells, we discovered and characterized a noncanonical cellular response that is specific to nonblocking replication stress. Although this response generates reactive oxygen species (ROS), it induces a program that prevents the accumulation of premutagenic 8-oxoguanine in an adaptive way.

View Article and Find Full Text PDF

The base excision repair (BER) pathway involves sequential action of DNA glycosylases and apurinic/apyrimidinic (AP) endonucleases to incise damaged DNA and prepare DNA termini for incorporation of a correct nucleotide by DNA polymerases. It has been suggested that the enzymatic steps in BER include recognition of a product-enzyme complex by the next enzyme in the pathway, resulting in the "passing-the-baton" model of transfer of DNA intermediates between enzymes. To verify this model, in this work, we aimed to create a suitable experimental system.

View Article and Find Full Text PDF

In yeast cells, apurinic/apyrimidinic (AP) sites are primarily repaired by base excision repair. Base excision repair is initiated by one of two AP endonucleases: Apn1 or Apn2. AP endonucleases catalyze hydrolytic cleavage of the phosphodiester backbone on the 5' side of an AP site, thereby forming a single-strand break containing 3'-OH and 5'-dRP ends.

View Article and Find Full Text PDF

apurinic/apyrimidinic (AP) endonuclease Nfo is one of the key participants in DNA repair. The principal biological role of this enzyme is the recognition and hydrolysis of AP sites, which arise in DNA either as a result of the spontaneous hydrolysis of an N-glycosidic bond with intact nitrogenous bases or under the action of DNA glycosylases, which eliminate various damaged bases during base excision repair. Nfo also removes 3'-terminal blocking groups resulting from AP lyase activity of DNA glycosylases.

View Article and Find Full Text PDF

Elucidation of physicochemical mechanisms of enzymatic processes is one of the main tasks of modern biology. High efficiency and selectivity of enzymatic catalysis are mostly ensured by conformational dynamics of enzymes and substrates. Here, we applied a stopped-flow kinetic analysis based on fluorescent spectroscopy to investigate mechanisms of conformational transformations during the removal of alkylated bases from DNA by ALKBH2, a human homolog of AlkB dioxygenase.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) endonuclease Nfo from Escherichia coli recognises AP sites in DNA and catalyses phosphodiester bond cleavage on the 5' side of AP sites and some damaged or undamaged nucleotides. Here, the mechanism of target nucleotide recognition by Nfo was analysed by pulsed electron-electron double resonance (PELDOR, also known as DEER) spectroscopy and pre-steady-state kinetic analysis with Förster resonance energy transfer detection of DNA conformational changes during DNA binding. The efficiency of endonucleolytic cleavage of a target nucleotide in model DNA substrates was ranked as (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran [F-site] > 5,6-dihydro-2'-deoxyuridine > α-anomer of 2'-deoxyadenosine >2'-deoxyuridine > undamaged DNA.

View Article and Find Full Text PDF

Human apurinic/apyrimidinic endonuclease APE1 catalyzes endonucleolytic hydrolysis of phosphodiester bonds on the 5' side of structurally unrelated damaged nucleotides in DNA or native nucleotides in RNA. APE1 additionally possesses 3'-5'-exonuclease, 3'-phosphodiesterase, and 3'-phosphatase activities. According to structural data, endo- and exonucleolytic cleavage of DNA is executed in different complexes when the excised residue is everted from the duplex or placed within the intrahelical DNA cavity without nucleotide flipping.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP)-endonucleases are multifunctional enzymes that are required for cell viability. AP-endonucleases incise DNA 5' to an AP-site; can recognize and process some damaged nucleosides; and possess 3'-phosphodiesterase, 3'-phosphatase, and endoribonuclease activities. To elucidate the mechanism of substrate cleavage in detail, we analyzed the effect of mono- and divalent metal ions on the exo- and endonuclease activities of four homologous APE1-like endonucleases (from an insect (Rrp1), amphibian (xAPE1), fish (zAPE1), and from humans (hAPE1)).

View Article and Find Full Text PDF

This work presents new data on human endonuclease VIII-like 2 protein (hNEIL2), a part of DNA glycosylases of the helix-two-turn-helix structural superfamily. While X-ray structure of oNEIL2 (opossum Monodelphis) was resolved partially [1], the structure of hNEIL2 has not yet been determined. This data article describes a powerful combination of hydrogen-deuterium exchange mass spectrometry, homology modeling, and molecular dynamics simulations for protein conformational dynamics analysis.

View Article and Find Full Text PDF

Base excision DNA repair (BER) is necessary for removal of damaged nucleobases from the genome and their replacement with normal nucleobases. BER is initiated by DNA glycosylases, the enzymes that cleave the N-glycosidic bonds of damaged deoxynucleotides. Human endonuclease VIII-like protein 2 (hNEIL2), belonging to the helix-two-turn-helix structural superfamily of DNA glycosylases, is an enzyme uniquely specific for oxidized pyrimidines in non-canonical DNA substrates such as bubbles and loops.

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) endonucleases Nfo () and APE1 (human) represent two conserved structural families of enzymes that cleave AP-site-containing DNA in base excision repair. Nfo and APE1 have completely different structures of the DNA-binding site, catalytically active amino acid residues and catalytic metal ions. Nonetheless, both enzymes induce DNA bending, AP-site backbone eversion into the active-site pocket and extrusion of the nucleotide located opposite the damage.

View Article and Find Full Text PDF

It was proposed that the last universal common ancestor (LUCA) evolved under high temperatures in an oxygen-free environment, similar to those found in deep-sea vents and on volcanic slopes. Therefore, spontaneous DNA decay, such as base loss and cytosine deamination, was the major factor affecting LUCA's genome integrity. Cosmic radiation due to Earth's weak magnetic field and alkylating metabolic radicals added to these threats.

View Article and Find Full Text PDF

Despite significant achievements in the elucidation of the nature of protein-DNA contacts that control the specificity of nucleotide incision repair (NIR) by apurinic/apyrimidinic (AP) endonucleases, the question on how a given nucleotide is accommodated by the active site of the enzyme remains unanswered. Therefore, the main purpose of our study was to compare kinetics of conformational changes of three homologous APE1-like endonucleases (insect Rrp1, amphibian xAPE1, and fish zAPE1) during their interaction with various damaged DNA substrates, i.e.

View Article and Find Full Text PDF

Chemical alterations in DNA induced by genotoxic factors can have a complex nature such as bulky DNA adducts, interstrand DNA cross-links (ICLs), and clustered DNA lesions (including double-strand breaks, DSB). Complex DNA damage (CDD) has a complex character/structure as compared to singular lesions like randomly distributed abasic sites, deaminated, alkylated, and oxidized DNA bases. CDD is thought to be critical since they are more challenging to repair than singular lesions.

View Article and Find Full Text PDF

Proteins from the poly(ADP-ribose) polymerase (PARP) family, such as PARP1 and PARP2, use NAD as a substrate to catalyze the synthesis of polymeric chains consisting of ADP-ribose units covalently attached to an acceptor molecule. PARP1 and PARP2 are viewed as DNA damage sensors that, upon binding to strand breaks, poly(ADP-ribosyl)ate themselves and nuclear acceptor proteins. The flowering plant contains three genes encoding homologs of mammalian PARPs: , , and .

View Article and Find Full Text PDF