Magnetic resonance imaging is a widespread clinical tool for the detection of soft tissue morphology and pathology. However, the clinical deployment of magnetic resonance imaging scanners is ultimately limited by size, cost, and space constraints. Here, we discuss the design and performance of a low-field single-sided magnetic resonance sensor intended for point-of-care evaluation of skeletal muscle in vivo.
View Article and Find Full Text PDFTunable porous composite materials to control metal and metal oxide functionalization, conductivity, pore structure, electrolyte mass transport, mechanical strength, specific surface area, and magneto-responsiveness are critical for a broad range of energy storage, catalysis, and sensing applications. Biotemplated transition metal composite aerogels present a materials approach to address this need. To demonstrate a solution-based synthesis method to develop cobalt and cobalt oxide aerogels for high surface area multifunctional energy storage electrodes, carboxymethyl cellulose nanofibers (CNF) and alginate biopolymers were mixed to form hydrogels to serve as biotemplates for cobalt nanoparticle formation via the chemical reduction of cobalt salt solutions.
View Article and Find Full Text PDFMagnetic resonance (MR) imaging is a powerful clinical tool for the detection of soft tissue morphology and pathology, which often provides actionable diagnostic information to clinicians. Its clinical use is largely limited due to size, cost, time, and space constraints. Here, we discuss the design and performance of a low-field single-sided MR sensor intended for point-of-care (POC) evaluation of skeletal muscle .
View Article and Find Full Text PDF