Cannabis Cannabinoid Res
September 2024
Cannabis Cannabinoid Res
December 2024
Animal studies suggest that adolescent exposure to Δ-tetrahydrocannabinol (Δ-THC), the intoxicating constituent of cannabis, causes lasting functional alterations in brain and other organs. Those studies often neglect the impact that age- and sex-dependent differences in the distribution and metabolism of the drug might exert on its pharmacological effects. Here, we provide a comparative analysis of Δ-THC pharmacokinetics in adolescent and adult female mice, which identify significant dissimilarities in distribution and metabolism of Δ-THC between females of these age groups.
View Article and Find Full Text PDFOne of cannabis' most iconic effects is the stimulation of hedonic high-calorie eating-the "munchies"-yet habitual cannabis users are, on average, leaner than non-users. We asked whether this phenotype might result from lasting changes in energy balance established during adolescence, when use of the drug often begins. We found that daily low-dose administration of cannabis' intoxicating constituent, Δ-tetrahydrocannabinol (THC), to adolescent male mice causes an adult metabolic phenotype characterized by reduced fat mass, increased lean mass and utilization of fat as fuel, partial resistance to diet-induced obesity and dyslipidemia, enhanced thermogenesis, and impaired cold- and β-adrenergic receptor-stimulated lipolysis.
View Article and Find Full Text PDFPassive aerosol exposure to Δ-tetrahydrocannabinol (THC) in laboratory animals results in faster onset of action and less extensive liver metabolism compared to most other administration routes and might thus provide an ecologically relevant model of human cannabis inhalation. Previous studies have, however, overlooked the possibility that rodents, as obligate nose breathers, may accumulate aerosolized THC in the nasal cavity, from where the drug might directly diffuse to the brain. To test this, we administered THC (ten 5-s puffs of 100 mg/mL of THC) to adolescent (31-day-old) Sprague-Dawley rats of both sexes.
View Article and Find Full Text PDFΔ-tetrahydrocannabinol (THC) and cannabidiol (CBD) are major chemical constituents of cannabis, which may interact either directly or indirectly with the endocannabinoid and endocannabinoid-like ("paracannabinoid") systems, two lipid-based signaling complexes that play important roles in physiology. Legislative changes emphasize the need to understand how THC and CBD might impact endocannabinoid and paracannabinoid signaling, and to develop analytical approaches to study such impact. In this study, we describe a sensitive and accurate method for the simultaneous quantification of THC, its main oxidative metabolites [11-hydroxy-Δ-THC (11-OH-THC) and 11-nor-9-carboxy-Δ-THC (11-COOH-THC)], CBD, and a representative set of endocannabinoid [anandamide and 2-arachidonoyl--glycerol (2-AG)] and paracannabinoid [palmitoylethanolamide (PEA) and oleoylethanolamide (OEA)] compounds.
View Article and Find Full Text PDFThe lysosomal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) deactivates palmitoylethanolamide (PEA), a lipid-derived PPAR-α agonist that is critically involved in the control of pain and inflammation. In this study, we asked whether NAAA-regulated PEA signaling might contribute to dopamine neuron degeneration and parkinsonism induced by the mitochondrial neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vitro experiments showed that 6-OHDA and MPTP enhanced NAAA expression and lowered PEA content in human SH-SY5Y cells.
View Article and Find Full Text PDFBackground: During adolescence, microglia are actively involved in neocortical maturation while concomitantly undergoing profound phenotypic changes. Because the teenage years are also a time of experimentation with cannabis, we evaluated whether adolescent exposure to the drug's psychotropic constituent, Δ-tetrahydrocannabinol (THC), might persistently alter microglia function.
Methods: We administered THC (5 mg/kg, intraperitoneal) once daily to male and female mice from postnatal day (PND) 30 to PND44 and examined the transcriptome of purified microglia in adult animals (PND70 and PND120) under baseline conditions or following either of two interventions known to recruit microglia: lipopolysaccharide injection and repeated social defeat.
Introduction: Previous work suggests the existence of a paracrine signaling mechanism in which histamine released from visceral mast cells into the portal circulation contributes to fasting-induced ketogenesis by stimulating biosynthesis of the endogenous high-affinity PPAR-α agonist oleoylethanolamide (OEA).
Methods: Male C57Bl/6J mice were rendered obese by exposure to a high-fat diet (HFD; 60% fat). We measured histamine, OEA, and other fatty-acid ethanolamides by liquid-chromatography/mass spectrometry, gene transcription by RT-PCR, protein expression by ELISA, neutral lipid accumulation in the liver using Red Oil O and BODIPY staining, and collagen levels using picrosirius red staining.
Cannabis Cannabinoid Res
December 2022
Studies in rodent models have shown that adolescent exposure to Δ-THC, the psychotropic constituent of cannabis, produces long-lasting alterations in brain function and behavior. However, our understanding of how age and sex might influence the distribution and metabolism of THC in laboratory rodents is still incomplete. In the present report, we provide a comparative analysis of the pharmacokinetic (PK) properties of THC in adolescent and adult rats of both sexes, and outline several dissimilarities across these groups.
View Article and Find Full Text PDFΔ-tetrahydrocannabinol (THC) is the intoxicating constituent of cannabis and is responsible for the drug's reinforcing effects. Retrospective human studies suggest that cannabis use during adolescence is linked to long-term negative psychological outcomes, but in such studies it is difficult to distinguish the effects of THC from those of coexisting factors. Therefore, translationally relevant animal models are required to properly investigate THC effects in adolescents.
View Article and Find Full Text PDFWe investigated the pharmacokinetic properties of Δ-tetrahydrocannabinol (Δ-THC), the main psychoactive constituent of cannabis, in adolescent and adult male mice. The drug was administered at logarithmically ascending doses (0.5, 1.
View Article and Find Full Text PDF