Background: Fecal microbiota transplantation (FMT) is a highly effective treatment for recurrent Clostridioides difficile infection (CDI). However, 10-20% of patients still fail to recover following FMT. There is a need to understand why these failures occur and if there are modifiable factors that can be addressed by clinicians performing FMT.
View Article and Find Full Text PDFBackground: Immune checkpoint inhibitor-mediated colitis (IMC) is a common adverse event following immune checkpoint inhibitor (ICI) therapy for cancer. IMC has been associated with improved overall survival (OS) and progression-free survival (PFS), but data are limited to a single site and predominantly for melanoma patients.
Aim: To determine the association of IMC with OS and PFS and identify clinical predictors of IMC.
World J Gastrointest Oncol
August 2021
Immune checkpoint inhibitors (ICI) have markedly changed the landscape of cancer therapy. By re-invigorating the immune system against tumors, ICI provide novel therapeutic options for a broad variety of malignancies, including many gastrointestinal (GI) cancers. However, these therapies can also induce autoimmune-like side effects in healthy tissue across the body.
View Article and Find Full Text PDFMicrobial exposures can define an individual's basal immune state. Cohousing specific pathogen-free (SPF) mice with pet store mice, which harbor numerous infectious microbes, results in global changes to the immune system, including increased circulating phagocytes and elevated inflammatory cytokines. How these differences in the basal immune state influence the acute response to systemic infection is unclear.
View Article and Find Full Text PDFBackground: Human microbiota-associated (HMA) animal models relying on germ-free recipient mice are being used to study the relationship between intestinal microbiota and human disease. However, transfer of microbiota into germ-free animals also triggers global developmental changes in the recipient intestine, which can mask disease-specific attributes of the donor material. Therefore, a simple model of replacing microbiota into a developmentally mature intestinal environment remains highly desirable.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is a complex set of diseases that lead to chronic inflammation in the gastrointestinal tract. Although the etiology of IBD is not fully understood, it is well-known that the intestinal microbiota is associated with the development and maintenance of IBD. Manipulation of the gut microbiota, therefore, may represent a target for IBD therapy.
View Article and Find Full Text PDFStandard antibiotic-based strategies for the treatment of Clostridium difficile infections disrupt indigenous microbiota and commonly fail to eradicate bacterial spores, two key factors that allow recurrence of infection. As an alternative approach to controlling C. difficile infection, a series of bile acid derivatives have been prepared that inhibit taurocholate-induced spore germination.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2017
Primary bile acids serve important roles in cholesterol metabolism, lipid digestion, host-microbe interactions, and regulatory pathways in the human host. While most bile acids are reabsorbed and recycled via enterohepatic cycling, ∼5% serve as substrates for bacterial biotransformation in the colon. Enzymes involved in various transformations have been characterized from cultured gut bacteria and reveal taxa-specific distribution.
View Article and Find Full Text PDFFecal microbiota transplantation (FMT) is a highly effective therapy for recurrent Clostridium difficile infection (R-CDI), but its mechanisms remain poorly understood. Emerging evidence suggests that gut bile acids have significant influence on the physiology of C. difficile, and therefore on patient susceptibility to recurrent infection.
View Article and Find Full Text PDFGoals: To test whether ursodeoxycholic acid (UDCA) is inhibitory to Clostridium difficile and can be used in the treatment of C. difficile-associated ileal pouchitis.
Background: The restoration of secondary bile metabolism may be the key mechanism for fecal microbiota transplantation (FMT) in treating recurrent C.
In the recent years fecal microbiota transplantation (FMT) has emerged as an effective therapeutic option for patients with refractory Clostridium difficile infection that is not responding to antibiotic therapy. It results in implantation of donor microbiota into recipients and restoration of normal distal gut microbial community structure. We anticipate that this form of therapy represents merely the first entry into a new class of therapeutics.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
February 2014
Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria.
View Article and Find Full Text PDFPurpose: Proliferative vitreoretinopathy (PVR) is a complication of retinal detachment that can lead to surgical failure and vision loss. Previous studies suggest that a variety of retinal cells, including RPE and Müller glia, may be responsible. Platelet-derived growth factor receptor alpha (PDGFRα) has been strongly implicated in the pathogenesis, and found to be intrinsic to the development of PVR in rabbit models.
View Article and Find Full Text PDFFecal microbiota transplantation (FMT) is becoming a more widely used technology for treatment of recurrent Clostridum difficile infection (CDI). While previous treatments used fresh fecal slurries as a source of microbiota for FMT, we recently reported the successful use of standardized, partially purified and frozen fecal microbiota to treat CDI. Here we report that high-throughput 16S rRNA gene sequencing showed stable engraftment of gut microbiota following FMT using frozen fecal bacteria from a healthy donor.
View Article and Find Full Text PDFPurpose. Proliferative vitreoretinopathy (PVR) is a complication of retinal detachment characterized by redetachment of the retina as a result of membrane formation and contraction. A variety of retinal cells, including retinal pigment epithelial (RPE) and Müller glia, and growth factors may be responsible.
View Article and Find Full Text PDFObjectives: While fecal microbiota transplantation (FMT) is historically known to be an effective means to treat recurrent Clostridium difficile infection (CDI) refractory to standard antibiotic therapies, the procedure is rarely performed. At least some of the reasons for limited availability are those of practicality, including aesthetic concerns and costs of donor screening. The objective of this study was to overcome these barriers in our clinical FMT program.
View Article and Find Full Text PDF