Publications by authors named "Alexa M Dickson"

Pathogenic variants in the receptor tyrosine kinase TIE2, encoded by TEK, are known to cause vascular malformations (VMs). In this study, we retrospectively reviewed the deidentified data generated through clinical NGS testing in our laboratory and found 88 VM cases with a total of 107 clinically significant TEK variants. Among those, 23 unique variants at the amino acid level were identified, including five novel (p.

View Article and Find Full Text PDF

The CELF family of RNA-binding proteins regulates many steps of mRNA metabolism. Although their best characterized function is in pre-mRNA splice site choice, CELF family members are also powerful modulators of mRNA decay. In this review we focus on the different modes of regulation that CELF proteins employ to mediate mRNA decay by binding to GU-rich elements.

View Article and Find Full Text PDF

We have demonstrated previously that the cellular HuR protein binds U-rich elements in the 3' untranslated region (UTR) of Sindbis virus RNA and relocalizes from the nucleus to the cytoplasm upon Sindbis virus infection in 293T cells. In this study, we show that two alphaviruses, Ross River virus and Chikungunya virus, lack the conserved high-affinity U-rich HuR binding element in their 3' UTRs but still maintain the ability to interact with HuR with nanomolar affinities through alternative binding elements. The relocalization of HuR protein occurs during Sindbis infection of multiple mammalian cell types as well as during infections with three other alphaviruses.

View Article and Find Full Text PDF

Eukaryotic cells have a powerful RNA decay machinery that plays an important and diverse role in regulating both the quantity and the quality of gene expression. Viral RNAs need to successfully navigate around this cellular machinery to initiate and maintain a highly productive infection. Recent work has shown that viruses have developed a variety of strategies to accomplish this, including inherent RNA shields, hijacking host RNA stability factors, incapacitating the host decay machinery and changing the entire landscape of RNA stability in cells using virally encoded nucleases.

View Article and Find Full Text PDF

How viral transcripts are protected from the cellular RNA decay machinery and the importance of this protection for the virus are largely unknown. We demonstrate that Sindbis virus, a prototypical single-stranded arthropod-borne alphavirus, uses U-rich 3' UTR sequences in its RNAs to recruit a known regulator of cellular mRNA stability, the HuR protein, during infections of both human and vector mosquito cells. HuR binds viral RNAs with high specificity and affinity.

View Article and Find Full Text PDF

An increasing number of dominantly inherited diseases have now been linked with expansion of short repeats within specific genes. Although some of these expansions affect protein function or result in haploinsufficiency, a significant portion cause pathogenesis through production of toxic RNA molecules that alter cellular metabolism. In this review, we examine the criteria that influence toxicity of these mutant RNAs and discuss new developments in therapeutic approaches.

View Article and Find Full Text PDF

Gemin4 is a ubiquitously expressed multifunctional protein that is involved in U snRNP assembly, apoptosis, nuclear/cytoplasmic transportation, transcription, and RNAi pathways. Gemin4 is one of the core components of the Gemin-complex, which also contains survival motor neuron (SMN), the seven Gemin proteins (Gemin2-8), and Unrip. Mutations in the SMN1 gene cause the autosomal recessive disorder spinal muscular atrophy (SMA).

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that is the leading genetic cause of infant mortality. SMA is caused by the loss of survival motor neuron-1 (SMN1). In humans, a nearly identical copy gene is present, called SMN2.

View Article and Find Full Text PDF