Nuclear magnetic resonance (NMR) is fundamental in the natural sciences, from chemical analysis and structural biology, to medicine and physics. Despite its enormous achievements, one of its most severe limitations is the low sensitivity, which arises from the small population difference of nuclear spin states. Methods such as dissolution dynamic nuclear polarization and parahydrogen induced hyperpolarization can enhance the NMR signal by several orders of magnitude, however, their intrinsic limitations render multidimensional hyperpolarized liquid-state NMR a challenge.
View Article and Find Full Text PDFCoiled-coil peptides are high-affinity, selective, self-assembling binding motifs, making them attractive components for the preparation of functional biomaterials. Photocontrol of coiled-coil self-assembly allows for the precise localization of their activity. To rationally explore photoactivity in a model coiled coil, three azobenzene-containing amino acids were prepared and substituted into the hydrophobic core of the E/K coiled-coil heterodimer.
View Article and Find Full Text PDFMolecularly thin, nanoporous thin films are of paramount importance in material sciences. Their use in a wide range of applications requires control over their chemical functionalities, which is difficult to achieve using current production methods. Here, the small polycyclic aromatic hydrocarbon decacyclene is used to form molecular thin films, without requiring covalent crosslinking of any kind.
View Article and Find Full Text PDFLithium ion selective crown ethers have been the subject of much research for a multitude of applications. Current research is aimed at structurally rigidifying crown ethers, as restructuring of the crown ether ring upon ion binding is energetically unfavorable. In this work, the lithium ion binding ability of the relatively rigid 8-crown-4 was investigated both computationally by density functional theory calculations and experimentally by H and Li NMR spectroscopy.
View Article and Find Full Text PDF