The emergence of SARS-CoV-2 highlights the global need for platform technologies to enable the rapid development of diagnostics, vaccines, treatments, and personal protective equipment (PPE). However, many current technologies require the detailed mechanistic knowledge of specific material-virion interactions before they can be employed, for example, to aid in the purification of vaccine components or in the design of a more effective PPE. Here, we show that an adaption of a polymer microarray method for screening bacterial-surface interactions allows for the screening of polymers for desirable material-virion interactions.
View Article and Find Full Text PDFCurrently, marketed influenza vaccines are only efficient against homologous viruses, thus requiring a seasonal update based on circulating subtypes. This constant reformulation adds several challenges to manufacturing, particularly in purification due to the variation of the physicochemical properties of the vaccine product. A universal platform approach capable of handling such variation is therefore of utmost importance.
View Article and Find Full Text PDFA variety of Good Manufacturing Practice (GMP) compliant processes have been reported for production of non-replicating adenovirus vectors, but important challenges remain. Most clinical development of adenovirus vectors now uses simian adenoviruses or rare human serotypes, whereas reported manufacturing processes mainly use serotypes such as AdHu5 which are of questionable relevance for clinical vaccine development. Many clinically relevant vaccine transgenes interfere with adenovirus replication, whereas most reported process development uses selected antigens or even model transgenes such as fluorescent proteins which cause little such interference.
View Article and Find Full Text PDFAn evolving biopharmaceutical industry requires advancements in biomanufacturing that offer increased productivity and improved economics without sacrificing process robustness. Accordingly, we have developed a new monoclonal antibody purification template comprised of flocculation-based clarification, capture by continuous multi-column protein A chromatography and flow-through polishing. The new process offers a robust, single-use manufacturing solution while significantly reducing overall cost of goods.
View Article and Find Full Text PDFExpert Rev Vaccines
December 2014
The demand for plasmid DNA (pDNA) has vastly increased over the past decade in response to significant advances that have been made in its application for gene therapy and vaccine development. Plasmid DNA-based vaccines are experiencing a resurgence due to success with prime-boost immunization strategies. The challenge has always been poor productivity and delivery of pDNA.
View Article and Find Full Text PDFOptimal bioreactor harvest time is typically determined based on maximizing product titer without compromising product quality. We suggest that ease of downstream purification should also be considered during harvest. In this view, we studied the effect of antiapoptosis genes on downstream performance.
View Article and Find Full Text PDFAssays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a "discovery" assay, the latter as a "monitoring" assay.
View Article and Find Full Text PDF