High-throughput microscopy has enabled screening of cell phenotypes at unprecedented scale. Systematic identification of cell phenotype changes (such as cell morphology and protein localization changes) is a major analysis goal. Because cell phenotypes are high-dimensional, unbiased approaches to detect and visualize the changes in phenotypes are still needed.
View Article and Find Full Text PDFPretrained protein sequence language models have been shown to improve the performance of many prediction tasks and are now routinely integrated into bioinformatics tools. However, these models largely rely on the transformer architecture, which scales quadratically with sequence length in both run-time and memory. Therefore, state-of-the-art models have limitations on sequence length.
View Article and Find Full Text PDFThe ability to computationally generate novel yet physically foldable protein structures could lead to new biological discoveries and new treatments targeting yet incurable diseases. Despite recent advances in protein structure prediction, directly generating diverse, novel protein structures from neural networks remains difficult. In this work, we present a diffusion-based generative model that generates protein backbone structures via a procedure inspired by the natural folding process.
View Article and Find Full Text PDFA major challenge to the characterization of intrinsically disordered regions (IDRs), which are widespread in the proteome, but relatively poorly understood, is the identification of molecular features that mediate functions of these regions, such as short motifs, amino acid repeats and physicochemical properties. Here, we introduce a proteome-scale feature discovery approach for IDRs. Our approach, which we call "reverse homology", exploits the principle that important functional features are conserved over evolution.
View Article and Find Full Text PDFCellular microscopy images contain rich insights about biology. To extract this information, researchers use features, or measurements of the patterns of interest in the images. Here, we introduce a convolutional neural network (CNN) to automatically design features for fluorescence microscopy.
View Article and Find Full Text PDFSummary: We introduce YeastSpotter, a web application for the segmentation of yeast microscopy images into single cells. YeastSpotter is user-friendly and generalizable, reducing the computational expertise required for this critical preprocessing step in many image analysis pipelines.
Availability And Implementation: YeastSpotter is available at http://yeastspotter.
The evaluation of protein localization changes in cells under diverse chemical and genetic perturbations is now possible due to the increasing quantity of screens that systematically image thousands of proteins in an organism. Integrating information from different screens provides valuable contextual information about the protein function. For example, proteins that change localization in response to many different stressful environmental perturbations may have different roles than those that only change in response to a few.
View Article and Find Full Text PDFThe evaluation of protein localization changes on a systematic level is a powerful tool for understanding how cells respond to environmental, chemical, or genetic perturbations. To date, work in understanding these proteomic responses through high-throughput imaging has catalogued localization changes independently for each perturbation. To distinguish changes that are targeted responses to the specific perturbation or more generalized programs, we developed a scalable approach to visualize the localization behavior of proteins across multiple experiments as a quantitative pattern.
View Article and Find Full Text PDFDespite the importance of characterizing genes that exhibit subcellular localization changes between conditions in proteome-wide imaging experiments, many recent studies still rely upon manual evaluation to assess the results of high-throughput imaging experiments. We describe and demonstrate an unsupervised k-nearest neighbours method for the detection of localization changes. Compared to previous classification-based supervised change detection methods, our method is much simpler and faster, and operates directly on the feature space to overcome limitations in needing to manually curate training sets that may not generalize well between screens.
View Article and Find Full Text PDF