Publications by authors named "Alex W Chin"

Excited state proton transfer is an ubiquitous phenomenon in biology and chemistry, spanning from the ultrafast reactions of photobases and acids to light-driven, enzymatic catalysis and photosynthesis. However, the simulation of such dynamics involves multiple challenges, since high-dimensional, out-of-equilibrium vibronic states play a crucial role, while a fully quantum description of the proton's dissipative, real-space dynamics is also required. In this work, we extend the powerful matrix product state approach to open quantum systems (TEDOPA) to study these demanding dynamics, and also more general nonadiabatic processes that can appear in complex photochemistry subject to strong laser driving.

View Article and Find Full Text PDF

Transition metal oxides are state-of-the-art materials for catalysing the oxygen evolution reaction (OER), whose slow kinetics currently limit the efficiency of water electrolysis. However, microscale physicochemical heterogeneity between particles, dynamic reactions both in the bulk and at the surface, and an interplay between particle reactivity and electrolyte makes probing the OER challenging. Here, we overcome these limitations by applying state-of-the-art compressive Raman imaging to uncover concurrent bias-dependent pathways for the OER in a dense, crystalline electrocatalyst, α-LiIrO.

View Article and Find Full Text PDF

The MPSDynamics.jl package provides an easy-to-use interface for performing open quantum systems simulations at zero and finite temperatures. The package has been developed with the aim of studying non-Markovian open system dynamics using the state-of-the-art numerically exact Thermalized-Time Evolving Density operator with Orthonormal Polynomials Algorithm based on environment chain mapping.

View Article and Find Full Text PDF

In non-perturbative non-Markovian open quantum systems, reaching either low temperatures with the hierarchical equations of motion (HEOM) or high temperatures with the Thermalized Time Evolving Density Operator with Orthogonal Polynomials Algorithm (T-TEDOPA) formalism in Hilbert space remains challenging. We compare different ways of modeling the environment. Sampling the Fourier transform of the bath correlation function, also called temperature dependent spectral density, proves to be very effective.

View Article and Find Full Text PDF

Nonadiabatic couplings between several electronic excited states are ubiquitous in many organic chromophores and can significantly influence optical properties. A recent experimental study demonstrated that the proflavine molecule exhibits surprising dual fluorescence in the gas phase, which is suppressed in polar solvent environments. Here, we uncover the origin of this phenomenon by parametrizing a linear-vibronic coupling Hamiltonian from spectral densities of system-bath coupling constructed along molecular dynamics trajectories, fully accounting for interactions with the condensed-phase environment.

View Article and Find Full Text PDF

Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity.

View Article and Find Full Text PDF

Modeling linear absorption spectra of solvated chromophores is highly challenging as contributions are present both from coupling of the electronic states to nuclear vibrations and from solute-solvent interactions. In systems where excited states intersect in the Condon region, significant non-adiabatic contributions to absorption line shapes can also be observed. Here, we introduce a robust approach to model linear absorption spectra accounting for both environmental and non-adiabatic effects from first principles.

View Article and Find Full Text PDF

Many optoelectronic devices based on organic materials require rapid and long-range singlet exciton transport. Key factors controlling exciton transport include material structure, exciton-phonon coupling and electronic state symmetry. Here, we employ femtosecond transient absorption microscopy to study the influence of these parameters on exciton transport in one-dimensional conjugated polymers.

View Article and Find Full Text PDF

For complex molecules, nuclear degrees of freedom can act as an environment for the electronic "system" variables, allowing the theory and concepts of open quantum systems to be applied. However, when molecular system-environment interactions are non-perturbative and non-Markovian, numerical simulations of the complete system-environment wave function become necessary. These many body dynamics can be very expensive to simulate, and extracting finite-temperature results-which require running and averaging over many such simulations-becomes especially challenging.

View Article and Find Full Text PDF

Simulating the non-perturbative and non-Markovian dynamics of open quantum systems is a very challenging many body problem, due to the need to evolve both the system and its environments on an equal footing. Tensor network and matrix product states (MPS) have emerged as powerful tools for open system models, but the numerical resources required to treat finite-temperature environments grow extremely rapidly and limit their applications. In this study we use time-dependent variational evolution of MPS to explore the striking theory of Tamascelli et al.

View Article and Find Full Text PDF

Inhomogeneous broadening of optical lines of the Fenna-Matthews-Olson (FMO) light-harvesting protein is investigated by combining a Monte Carlo sampling of low-energy conformational substates of the protein with a quantum chemical/electrostatic calculation of local transition energies (site energies) of the pigments. The good agreement between the optical spectra calculated for the inhomogeneous ensemble and the experimental data demonstrates that electrostatics is the dominant contributor to static disorder in site energies. Rotamers of polar amino acid side chains are found to cause bimodal distribution functions of site energy shifts, which can be probed by hole burning and single-molecule spectroscopy.

View Article and Find Full Text PDF

Exciton-polaritons in organic materials are hybrid states that result from the strong interaction of photons and the bound excitons that these materials host. Organic polaritons hold great interest for optoelectronic applications; however, progress toward this end has been impeded by the lack of a first principles approach that quantifies light-matter interactions in these systems, which would allow the formulation of molecular design rules. Here, we present a theoretical framework that combines first principles calculations for excitons with classical electrodynamics in order to quantify light-matter interactions.

View Article and Find Full Text PDF

Objectives: Enhanced inactivated influenza vaccines (eIIV) aim to increase immunogenicity and protection compared with the widely used standard IIV (S-IIV).

Methods: We tested four vaccines in parallel, FluZone high dose, FluBlok and FluAd versus S-IIV in a randomised controlled trial of older adults and in a mouse infection model to assess immunogenicity, protection from lethal challenge and mechanisms of action.

Results: In older adults, FluAd vaccination stimulated a superior antibody profile, including H3-HA antibodies that were elevated for up to 1 year after vaccination, higher avidity H3HA IgG and larger HA stem IgG responses.

View Article and Find Full Text PDF

Singlet fission in organic semiconductors causes a singlet exciton to decay into a pair of triplet excitons and holds potential for increasing the efficiency of photovoltaic devices. In this combined experimental and theoretical study, we reveal that a covalent dimer of the organic semiconductor tetracene undergoes activated singlet fission by qualitatively different mechanisms depending on the solvent environment. We show that intramolecular vibrations are an integral part of this mechanism, giving rise to mixing between charge transfer and triplet pair excitations.

View Article and Find Full Text PDF

The complex dynamics of ultrafast photoinduced reactions are governed by their evolution along vibronically coupled potential energy surfaces. It is now often possible to identify such processes, but a detailed depiction of the crucial nuclear degrees of freedom involved typically remains elusive. Here, combining excited-state time-domain Raman spectroscopy and tree-tensor network state simulations, we construct the full 108-atom molecular movie of ultrafast singlet fission in a pentacene dimer, explicitly treating 252 vibrational modes on 5 electronic states.

View Article and Find Full Text PDF

Heterostructured two-dimensional colloidal nanoplatelets are a class of material that has attracted great interest for optoelectronic applications due to their high photoluminescence yield, atomically tunable thickness, and ultralow lasing thresholds. Of particular interest are laterally heterostructured core-crown nanoplatelets with a type-II band alignment, where the in-plane spatial separation of carriers leads to indirect (or charge transfer) excitons with long lifetimes and bright, highly Stokes shifted emission. Despite this, little is known about the nature of the lowest energy exciton states responsible for emission in these materials.

View Article and Find Full Text PDF

The theoretical study of open quantum systems strongly coupled to a vibrational environment remains computationally challenging due to the strongly non-Markovian characteristics of the dynamics. We study this problem in the case of a molecular dimer of the organic semiconductor tetracene, the exciton states of which are strongly coupled to a few hundreds of molecular vibrations. To do so, we employ a previously developed tensor network approach, based on the formalism of matrix product states.

View Article and Find Full Text PDF

The simulation of open quantum dynamics is a critical tool for understanding how the non-classical properties of matter might be functionalised in future devices. However, unlocking the enormous potential of molecular quantum processes is highly challenging due to the very strong and non-Markovian coupling of 'environmental' molecular vibrations to the electronic 'system' degrees of freedom. Here, we present an advanced but general computational strategy that allows tensor network methods to effectively compute the non-perturbative, real-time dynamics of exponentially large vibronic wave functions of real molecules.

View Article and Find Full Text PDF

We calculate the exact many-body time dynamics of polaritonic states supported by an optical cavity filled with organic molecules. Optical, vibrational, and radiative processes are treated on an equal footing employing the time-dependent variational matrix product states algorithm. We demonstrate signatures of non-Markovian vibronic dynamics and its fingerprints in the far-field photon emission spectrum at arbitrary light-matter interaction scales, ranging from the weak to the strong coupling regimes.

View Article and Find Full Text PDF

The original HTML version of this Article contained an error in the second mathematical expression in the fourth sentence of the fourth paragraph of the 'Excitation transfer with uniform white noise' section of the Results. This has been corrected in the HTML version of the Article.The original PDF version of this Article incorrectly stated that 'Correspondence and requests for materials should be addressed to A.

View Article and Find Full Text PDF

The process of photosynthesis, the main source of energy in the living world, converts sunlight into chemical energy. The high efficiency of this process is believed to be enabled by an interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure.

View Article and Find Full Text PDF

Experimental/theoretical evidence for sustained vibration-assisted electronic (vibronic) coherence in the Photosystem II Reaction Center (PSII RC) indicates that photosynthetic solar-energy conversion might be optimized through the interplay of electronic and vibrational quantum dynamics. This evidence has been obtained by investigating the primary charge separation process in the PSII RC by two-dimensional electronic spectroscopy (2DES) and Redfield modeling of the experimental data. However, while conventional Fourier transform analysis of the 2DES data allows oscillatory signatures of vibronic coherence to be identified in the frequency domain in the form of static 2D frequency maps, the real-time evolution of the coherences is lost.

View Article and Find Full Text PDF

Observation of excitonic quantum beats in photosynthetic antennae has prompted wide debate regarding the function of excitonic coherence in pigment-protein complexes. Much of this work focuses on the interactions of excitons with the femto-to-picosecond dynamical fluctuations of their environment. However, in experiments these effects can be masked by static disorder of the excited-state energies across ensembles, whose microscopic origins are challenging to predict.

View Article and Find Full Text PDF