Publications by authors named "Alex Vaz"

Traumatic brain injury (TBI) remains a pervasive clinical problem associated with significant morbidity and mortality. However, TBI remains clinically and biophysically ill-defined, and prognosis remains difficult even with the standardization of clinical guidelines and advent of multimodality monitoring. Here we leverage a unique data set from TBI patients implanted with either intracranial strip electrodes during craniotomy or quad-lumen intracranial bolts with depth electrodes as part of routine clinical practice.

View Article and Find Full Text PDF

Sequences of spiking activity have been heavily implicated as potential substrates of memory formation and retrieval across many species. A parallel line of recent evidence also asserts that sequential activity may arise from and be constrained by pre-existing network structure. Here we reconcile these two lines of research in the human brain by measuring single unit spiking sequences in the temporal lobe cortex as participants perform an episodic memory task.

View Article and Find Full Text PDF

Objective: Avoiding intracranial hypertension after traumatic brain injury (TBI) is a foundation of neurocritical care, to minimize secondary brain injury related to elevated intracranial pressure (ICP). However, this approach at best is reactive to episodes of intracranial hypertension, allowing for periods of elevated ICP before therapies can be initiated. Accurate prediction of ICP crises before they occur would permit clinicians to implement preventive strategies, minimize total time with ICP above threshold, and potentially avoid secondary injury.

View Article and Find Full Text PDF

Direct brain recordings have provided important insights into how high-frequency activity captured through intracranial EEG (iEEG) supports human memory retrieval. The extent to which such activity is comprised of transient fluctuations that reflect the dynamic coordination of underlying neurons, however, remains unclear. Here, we simultaneously record iEEG, local field potential (LFP), and single unit activity in the human temporal cortex.

View Article and Find Full Text PDF

Episodic memory retrieval is thought to rely on the replay of past experiences, yet it remains unknown how human single-unit activity is temporally organized during episodic memory encoding and retrieval. We found that ripple oscillations in the human cortex reflect underlying bursts of single-unit spiking activity that are organized into memory-specific sequences. Spiking sequences occurred repeatedly during memory formation and were replayed during successful memory retrieval, and this replay was associated with ripples in the medial temporal lobe.

View Article and Find Full Text PDF

Episodic memory retrieval relies on the recovery of neural representations of waking experience. This process is thought to involve a communication dynamic between the medial temporal lobe memory system and the neocortex. How this occurs is largely unknown, however, especially as it pertains to awake human memory retrieval.

View Article and Find Full Text PDF

Phase-amplitude coupling (PAC) is hypothesized to coordinate neural activity, but its role in successful memory formation in the human cortex is unknown. Measures of PAC are difficult to interpret, however. Both increases and decreases in PAC have been linked to memory encoding, and PAC may arise due to different neural mechanisms.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: