A completely biobased composite material was developed using a matrix of natural resin extracted from the Mora plant, commonly known as Mopa-Mopa or "Barniz de Pasto", reinforced with fibers extracted from plantain rachis agricultural residues. A solvent process, involving grinding, distillation, filtration, and drying stages, was implemented to extract the resin from the plant bud. To obtain the resin from the plant bud, the vegetable material was ground and then dissolved in a water-alcohol blend, followed by distillation, filtration, and grinding until the powdered resin was ready for use in the preparation of the biocomposite.
View Article and Find Full Text PDFThis work studied the effect of cellulose nanocrystal (NCC) content on the biodegradation kinetics of PLA-based multiscale cellulosic biocomposites (PLAMCBs). To facilitate biodegradation, the materials were subjected to thermo-oxidation before composting. Biodegradation was carried out for 180 days under controlled thermophilic composting conditions according to the ASTM D 5338 standard.
View Article and Find Full Text PDFNatural fiber-reinforced composite (NFRC) filaments for 3D printing were fabricated using polylactic acid (PLA) reinforced with 1-5 wt% henequen flour comprising particles with sizes between 90-250 μm. The flour was obtained from natural henequen fibers. NFRCs and pristine PLA specimens were printed with a 0° raster angle for tension tests.
View Article and Find Full Text PDFIn this work, the effect of microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) on the biodegradation, under composting conditions, of hierarchical PLA biocomposites (HBCs) was studied using a full 2 factorial experimental design. The HBCs were prepared by extrusion processing and were composted for 180 days. At certain time intervals, the specimens were removed from the compost for their chemical, thermal and morphological characterizations.
View Article and Find Full Text PDFThe Musaceae family has significant potential as a source of lignocellulosic fibres and starch from the plant's bunches and pseudostems. These materials, which have traditionally been considered waste, can be used to produce fully bio-based composites to replace petroleum-derived synthetic plastics in some sectors such as packaging, the automotive industry, and implants. The fibres extracted from Musaceae have mechanical, thermal, and physicochemical properties that allow them to compete with other natural fibres such as sisal, henequen, fique, and jute, among others, which are currently used in the preparation of bio-based composites.
View Article and Find Full Text PDFThe mechanical characterization of plain foamed concrete (PFC) and fiber-reinforced foamed concrete (FRFC) with a density of 700 kg/m was performed with compression and tension tests. FRFC was reinforced with the natural fiber henequen (untreated or alkaline-treated) at volume fractions of 0.5%, 1% and 1.
View Article and Find Full Text PDFBiocomposites were prepared from a ternary matrix of polylactic acid (PLA), polycaprolactone (PCL), and thermoplastic starch (TPS) and reinforced with native fique fibers from southwestern Colombia. The influence of surface modification by alkalization of fique fibers on the interfacial properties of the biocomposite was studied using pull-out tests. Additionally, the effect of short fique fibers in three proportions (10%, 20%, and 30% (/)) on the tensile mechanical properties of the composite was evaluated.
View Article and Find Full Text PDFIn this paper, abaca strands were used as reinforcement of polypropylene matrix and their tensile mechanical properties were studied. It was found relevant increments on the tensile properties of the abaca strand-PP composites despite the lack of good adhesion at fiber-matrix interface. Afterwards, it was stated the influence of using maleated polypropylene (MAPP) as compatibilizer to promote the interaction between abaca strands and polypropylene.
View Article and Find Full Text PDFViable bacterial counts, chemical markers, phospholipid fatty acid analysis (PLFA), and Fourier-transformed infrared spectroscopy (FTIR), together with electrochemical methods, were used to study biofilm dynamics and its impact on the corrosion resistance of UNS S31603 stainless steels exposed to the Gulf of Mexico seawater. Biofilms progressively accumulated, peaking on day 20, but finally detached. The extracellular polysaccharide (EPS)/cellular biomass ratio remained low most of the time, but reached its highest level (4.
View Article and Find Full Text PDF