A continuing challenge in modern medicine is the identification of safer and more efficacious drugs. Precision therapeutics, which have one molecular target, have been long promised to be safer and more effective than traditional therapies. This approach has proven to be challenging for multiple reasons including lack of efficacy, rapidly acquired drug resistance, and narrow patient eligibility criteria.
View Article and Find Full Text PDFDespite the success of protein kinase inhibitors as approved therapeutics, drug discovery has focused on a small subset of kinase targets. Here we provide a thorough characterization of the Published Kinase Inhibitor Set (PKIS), a set of 367 small-molecule ATP-competitive kinase inhibitors that was recently made freely available with the aim of expanding research in this field and as an experiment in open-source target validation. We screen the set in activity assays with 224 recombinant kinases and 24 G protein-coupled receptors and in cellular assays of cancer cell proliferation and angiogenesis.
View Article and Find Full Text PDFToxicokinetic (TK) models link administered doses to plasma, blood, and tissue concentrations. High-throughput TK (HTTK) performs in vitro to in vivo extrapolation to predict TK from rapid in vitro measurements and chemical structure-based properties. A significant toxicological application of HTTK has been "reverse dosimetry," in which bioactive concentrations from in vitro screening studies are converted into in vivo doses (mg/kg BW/day).
View Article and Find Full Text PDF