The biological basis of male-female brain differences has been difficult to elucidate in humans. The most notable morphological difference is size, with male individuals having on average a larger brain than female individuals, but a mechanistic understanding of how this difference arises remains unknown. Here we use brain organoids to show that although sex chromosomal complement has no observable effect on neurogenesis, sex steroids-namely androgens-lead to increased proliferation of cortical progenitors and an increased neurogenic pool.
View Article and Find Full Text PDFOviparous, facultative egg retention enables Drosophila females to withhold fertilized eggs in their reproductive tracts until circumstances favor oviposition. The propensity to retain fertilized eggs varies greatly between species, and is correlated with other reproductive traits, such as egg size and ovariole number. While previous studies have described the phenomenon, no study to date has characterized within-species variation or the genetic basis of the trait.
View Article and Find Full Text PDFCompetition between individuals belonging to the same species is a universal feature of natural populations and is the process underpinning organismal adaptation. Despite its importance, still comparatively little is known about the genetic variation responsible for competitive traits. Here, we measured the phenotypic variation and quantitative genetics parameters for two fitness-related traits-egg-to-adult viability and development time-across a panel of strains under varying larval densities.
View Article and Find Full Text PDFBackground: Embryogenesis is a highly conserved, canalized process, and variation in the duration of embryogenesis (DOE), i.e., time from egg lay to hatching, has a potentially profound effect on the outcome of within- and between-species competition.
View Article and Find Full Text PDFMota and Herculano-Houzel (Reports, 3 July 2015, p. 74) assign power functions to neuroanatomical data and present a model to account for evolutionary patterns of cortical folding in the mammalian brain. We detail how the model assumptions are in conflict with experimental and observational work and show that the model itself does not accurately fit the data.
View Article and Find Full Text PDFI propose that the underlying adaptation enabling the reproductive strategy of birthing live young (viviparity) is retraction of the site of fertilization within the female reproductive tract, and that this evolved as a means of postcopulatory sexual selection. There are three conspicuous aspects associated with viviparity: (i) internal development is a complex trait often accompanied by a suite of secondary adaptations, yet it is unclear how the intermediate state of this trait - egg retention - could have evolved; (ii) viviparity often results in a reduction in fecundity; (iii) viviparity has evolved independently many times across a diverse array of animal groups. Focusing on the Diptera (true flies), I provide explanations for these observations.
View Article and Find Full Text PDFmRNA localization is critical for eukaryotic cells and affects numerous transcripts, yet how cells regulate distribution of many mRNAs to their subcellular destinations is still unknown. We combined transcriptomics and systematic imaging to determine the tissue-specific expression and subcellular distribution of 5862 mRNAs during Drosophila oogenesis. mRNA localization is widespread in the ovary and detectable in all of its cell types-the somatic epithelial, the nurse cells, and the oocyte.
View Article and Find Full Text PDFExpansion of the neocortex is a hallmark of human evolution. However, determining which adaptive mechanisms facilitated its expansion remains an open question. Here we show, using the gyrencephaly index (GI) and other physiological and life-history data for 102 mammalian species, that gyrencephaly is an ancestral mammalian trait.
View Article and Find Full Text PDFA gene's "expression profile" denotes the number of transcripts present relative to all other transcripts. The overall rate of transcript production is determined by transcription and RNA processing rates. While the speed of elongating RNA polymerase II has been characterized for many different genes and organisms, gene-architectural features - primarily the number and length of exons and introns - have recently emerged as important regulatory players.
View Article and Find Full Text PDFThe roots of modern evo-devo can be traced back to the comparative anatomy of the 19th century. Inheriting from this tradition, the field has maintained a mechanistic approach to understanding the origins of distinct animal morphologies. While this focus has produced a valuable body of work, we argue here that a fuller understanding of why species diverge morphologically must be centered on the selective forces driving divergence, and these forces ultimately reside in the ecological context in which organisms live and reproduce.
View Article and Find Full Text PDFThe transition from maternal to zygotic control is fundamental to the life cycle of all multicellular organisms. It is widely believed that genomes are transcriptionally inactive from fertilization until zygotic genome activation (ZGA). Thus, the earliest genes expressed probably support the rapid cell divisions that precede morphogenesis and, if so, might be evolutionarily conserved.
View Article and Find Full Text PDFFront Neuroanat
April 2013
Embryonic development in mammals has evolved a platform for genomic conflict between mothers and embryos and, by extension, between maternal and paternal genomes. The evolutionary interests of the mother and embryo may be maximized through the promotion of sex-chromosome genes and imprinted alleles, resulting in the rapid evolution of postzygotic phenotypes preferential to either the maternal or paternal genome. In eutherian mammals, extraordinary in utero maternal investment in the brain, and neocortex especially, suggests that convergent evolution of an expanded mammalian neocortex along divergent lineages may be explained, in part, by parent-of-origin-linked gene expression arising from parent-offspring conflict.
View Article and Find Full Text PDFThe X chromosome is present as a single copy in the heterogametic sex, and this hemizygosity is expected to drive unusual patterns of evolution on the X relative to the autosomes. For example, the hemizgosity of the X may lead to a lower chromosomal effective population size compared to the autosomes, suggesting that the X might be more strongly affected by genetic drift. However, the X may also experience stronger positive selection than the autosomes, because recessive beneficial mutations will be more visible to selection on the X where they will spend less time being masked by the dominant, less beneficial allele--a proposal known as the faster-X hypothesis.
View Article and Find Full Text PDFJ Biomed Inform
February 2013
Recent studies have clearly demonstrated a shift towards collaborative research and team science approaches across a spectrum of disciplines. Such collaborative efforts have also been acknowledged and nurtured by popular extramurally funded programs including the Clinical Translational Science Award (CTSA) conferred by the National Institutes of Health. Since its inception, the number of CTSA awardees has steadily increased to 60 institutes across 30 states.
View Article and Find Full Text PDFThere is a remarkable similarity in the appearance of groups of animal species during periods of their embryonic development. This classic observation has long been viewed as an emphatic realization of the principle of common descent. Despite the importance of embryonic conservation as a unifying concept, models seeking to predict and explain different patterns of conservation have remained in contention.
View Article and Find Full Text PDFSubventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse).
View Article and Find Full Text PDFSummary: An essential element when analysing the structure, function, and dynamics of biological networks is the identification of communities of related nodes. An algorithm proposed recently enhances this process by clustering the links between nodes, rather than the nodes themselves, thereby allowing each node to belong to multiple overlapping or nested communities. The R package 'linkcomm' implements this algorithm and extends it in several aspects: (i) the clustering algorithm handles networks that are weighted, directed, or both weighted and directed; (ii) several visualization methods are implemented that facilitate the representation of the link communities and their relationships; (iii) a suite of functions are included for the downstream analysis of the link communities including novel community-based measures of node centrality; (iv) the main algorithm is written in C++ and designed to handle networks of any size; and (v) several clustering methods are available for networks that can be handled in memory, and the number of communities can be adjusted by the user.
View Article and Find Full Text PDFThe observation that animal morphology tends to be conserved during the embryonic phylotypic period (a period of maximal similarity between the species within each animal phylum) led to the proposition that embryogenesis diverges more extensively early and late than in the middle, known as the hourglass model. This pattern of conservation is thought to reflect a major constraint on the evolution of animal body plans. Despite a wealth of morphological data confirming that there is often remarkable divergence in the early and late embryos of species from the same phylum, it is not yet known to what extent gene expression evolution, which has a central role in the elaboration of different animal forms, underpins the morphological hourglass pattern.
View Article and Find Full Text PDFMutational robustness is the degree to which a phenotype, such as fitness, is resistant to mutational perturbations. Since most of these perturbations will tend to reduce fitness, robustness provides an immediate benefit for the mutated individual. However, robust systems decay due to the accumulation of deleterious mutations that would otherwise have been cleared by selection.
View Article and Find Full Text PDF