Publications by authors named "Alex Sutton Flynt"

MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in many biological processes, including the immune pathways that control bacterial, parasitic, and viral infections. Pathogens probably modify host miRNAs to facilitate successful infection, so they might be useful targets for vaccination strategies. There are few data on differentially expressed miRNAs in the black-legged tick after infection with , the causative agent of Lyme disease in the United States.

View Article and Find Full Text PDF

RNAi is an evolutionarily fluid mechanism with dramatically different activities across animal phyla. One major group where there has been little investigation is annelid worms. Here, the small RNAs of the polychaete developmental model are profiled across development.

View Article and Find Full Text PDF

Interferons (IFNs) are the key components of innate immunity and are crucial for host defense against viral infections. Here, we report a novel role of interleukin-17A (IL-17A) in inhibiting IFN-α2 expression thus promoting chikungunya virus (CHIKV) infection. CHIKV infected IL-17A deficient ( ) mice expressed a higher level of IFN-α2 and developed diminished viremia and milder footpad swelling in comparison to wild-type (WT) control mice, which was also recapitulated in IL-17A receptor-deficient ( ) mice.

View Article and Find Full Text PDF

House dust mites are common pests with an unusual evolutionary history, being descendants of a parasitic ancestor. Transition to parasitism is frequently accompanied by genome rearrangements, possibly to accommodate the genetic change needed to access new ecology. Transposable element (TE) activity is a source of genomic instability that can trigger large-scale genomic alterations.

View Article and Find Full Text PDF

Antisense morpholino oligonucleotides have been commonly used in zebrafish to inhibit mRNA function, either by inhibiting pre-mRNA splicing or by blocking translation initiation. Even with the advent of genome editing by CRISP/Cas9 technology, morpholinos provide a useful and rapid tool to knockdown gene expression. This is especially true when dealing with multiple alleles and large gene families where genetic redundancy can complicate knockout of all family members.

View Article and Find Full Text PDF