Over the last three decades, case-crossover designs have found many applications in health sciences, especially in air pollution epidemiology. They are typically used, in combination with partial likelihood techniques, to define a conditional logistic model for the responses, usually health outcomes, conditional on the exposures. Despite the fact that conditional logistic models have been shown equivalent, in typical air pollution epidemiology setups, to specific instances of the well-known Poisson time series model, it is often claimed that they cannot allow for overdispersion.
View Article and Find Full Text PDFBenchmark dose analysis aims to estimate the level of exposure to a toxin associated with a clinically significant adverse outcome and quantifies uncertainty using the lower limit of a confidence interval for this level. We develop a novel framework for benchmark dose analysis based on monotone additive dose-response models. We first introduce a flexible approach for fitting monotone additive models via penalized B-splines and Laplace-approximate marginal likelihood.
View Article and Find Full Text PDFWe propose a flexible and scalable approximate Bayesian inference methodology for the Cox Proportional Hazards model with partial likelihood. The model we consider includes nonlinear covariate effects and correlated survival times. The proposed method is based on nested approximations and adaptive quadrature, and the computational burden of working with the log-partial likelihood is mitigated through automatic differentiation and Laplace approximation.
View Article and Find Full Text PDFCommensal non-pathogenic spp. live within the human host alongside the pathogenic and and due to natural competence, horizontal gene transfer within the genus is possible and has been observed. Four distinct spp.
View Article and Find Full Text PDFA case-crossover analysis is used as a simple but powerful tool for estimating the effect of short-term environmental factors such as extreme temperatures or poor air quality on mortality. The environment on the day of each death is compared to the one or more "control days" in previous weeks, and higher levels of exposure on death days than control days provide evidence of an effect. Current state-of-the-art methodology and software (integrated nested Laplace approximation [INLA]) cannot be used to fit the most flexible case-crossover models to large datasets, because the likelihood for case-crossover models cannot be expressed in a manner compatible with this methodology.
View Article and Find Full Text PDF